Foundation Diet and Health
Diet and Health
QR Code
The best perspective for your health

Book Review "Milk, better not!" by Maria Rollinger

Best book about milk and dairy products that includes scientific studies and draws convincing conclusions about calcium and allergens.

Book Review "Milk Better Not" by Maria Rollinger, best book about dairy products.© CC-by 2.0, Catalina Sparleanu, PhD, Foundation Diet and Health Switzerland


The information in this book is based on scientific research. It provides readers with an entirely different view of milk (and dairy products). It's true that every food has its advantages and disadvantages, and that the disadvantages become apparent when larger amounts are consumed.

But the disadvantages of milk are so numerous and serious that some scientists refer to it as the most important food that you should avoid. This is why so many books have been written that are critical of milk.

Milch besser nicht! (Milk, better not!) is the best and most comprehensive critical book on milk and dairy products I've ever seen.

We are so heavily influenced by the industry, politics (lobbying), medicine, and the media that I probably shouldn't put the conclusions at the beginning. If you doubt the veracity of the statements below, please read through the collection of about 50 scientific papers provided by Maria Rollinger — the content and links are in English.

I can only recommend that you read this book because—despite my long and detailed book review—there is much evidence and proof that I could not include in my text. The summary here only shows the relationship between consumption and health. This and other topics relevant to milk appear in the discussion after the conclusion and summary.

  1. The high calcium content of milk is not good for us, and when we consume more dairy products, our risk of osteoporosis increases. See also the image and text below.

  2. According to figures from the World Health Organization (WHO), there is a clear correlation between the consumption of dairy products and the frequency of breast cancer (correlation).

    Dairy and breast cancer

    A comparison between West Germany and the former German Democratic Republic (GDR) shows the same. According to Harvard Medical School in the United States and other studies, milk (and dairy products) also cause an increase of ovarian cancer in women and prostate cancer in men. This is probably due to the large number of "growthhormones" present in milk and dairy products. Since milk severely neutralizes stomach acids, the gastric mucosal barrier (mucin) does not function or becomes weak. And thus "growthhormones" can enter the bloodstream.

  3. Cardiovascular diseases also occur because of the high cholesterol content of dairy products. The cholesterol levels of milk is sometimes higher than that of meat.

  4. Concerning Parkinson's disease, studies at Harvard University have shown that consuming dairy products several times a day can lead to an increased risk for Parkinson's disease in men, but not in women. The results of this study were confirmed multiple times between 2002 and 2007, primarily by Chen.

  5. In the case of autism, there is usually a functional disorder of the intestine. This leads to the release of larger protein particles (peptides) into the bloodstream before they are fully digested and has adverse effects. A diet free of dairy and gluten (GFDF diet) can bring significant improvement.

  6. The author criticizes the medical system for the fact that patients with acne (acne vulgaris) and eczema (atopic dermatitis) are treated for months or years with cortisone and the like without any great success. It is only when they take the time to research that they learn how they can easily avoid allergens. Then they usually experience long-term success or are even cured. The main allergen is most often milk.

    GFCF diet

    But in my opinion, you should also switch to a gluten-free casein-free diet (GFCF diet). If you strictly adhere to this diet, you will see results in just two weeks. Having a medical examination that includes skin and blood tests to identify allergens can bring results if the steps mentioned above do not work.

  7. Even in the case of rheumatoid arthritis, histamines have been found in the inflamed areas of affected joints. People who suffer from this condition develop antibodies against certain foods, often milk proteins.

  8. ADD (attention deficit disorder) and ADHD (attention deficit hyperactivity disorder) are also linked to diet. The author writes that anyone who has ever watched a child who is playing quietly and then goes berserk half an hour after eating a chocolate bar knows what we are talking about.

    She goes on to say that we shouldn't be surprised that so many children who eat primarily pasta, pizza, bread, hot dogs, chocolate milk, candy bars, pudding, and ice cream, develop these kinds of diseases. After all, all of these foods contain gluten and milk proteins. She then recommends valuable books on the subject.

  9. Exorphins are protein fragments that resemble opiates and have the same effect: they make people happy and addicted, are calming, and reduce pain. These exorphins that can make you happy are found, most notably, in grains (gluten) and in milk. Digestion converts βα1-casein into the strongest-acting opioid β-casomorphin 7. Casomorphins then get into the bloodstream and into the brain.

    Lifestyle diseases such as (ADD) in children, depression in adults (major depressive disorder), autism, schizophrenia, type 1 diabetes mellitus (infants given cow's milk too soon), and heart disease can be caused by milk consumption.

  10. Milk protein is made up of about 80 % casein protein and 20 % whey protein. Apart from protein in eggs (egg allergy), milk proteins are the most frequent cause of true food allergies, particularly in the case of young children.

While the above is true for all people, the following is only an issue if lactose intolerance is present. For the large majority of people who are lactose intolerant, lactose can cause mild to severe digestive problems that can have a variety of harmful effects. This book also covers other very rare diseases that for genetic reasons can result from milk consumption.

Swissmilk commercials

Swiss Milk Advertising. An example of how the dairy industry lies to us.© CC-by 2.0, Swiss Milk

The cooperative association of Swiss Milk Producers (SMP) has used and uses a cow with the name Lovely in its Swissmilk commercials. Doing tricks on skis and skateboards, this Freiberg dairy cow gives the impression that milk builds especially strong bones. However, the Swiss Federal Office for Health (Bundesamt für gesundheit, BAG) intervened, and in 2001 the Supreme Court of Switzerland held that the slogans "Milk builds strong bones" and "Milk gives you strong bones" as well as the message that the calcium in milk prevents osteoporosis may no longer be used in Switzerland. Art. 19 para. 1 lit. c LMV, art. 10 ECHR, Art. 27 BV, Art. 18 LMG.

Since the visual statement wasn’t banned, the advertisement simply continued to run without the slogan. I believe that this is deception at the highest level because even Swissmilk must know that if a cow falls down in a milking stall, it will probably break some bones and then "must" be killed. For several years, I owned 75 cows (for manure for organic bananas) and my own milk processing and marketing business. Here is a picture as an example of how the dairy industry lies to us. When I made an inquiry by phone, I was told that I was in no way allowed to use the image and was threatened with court action. Here it is as documentation.

In the past, slow fermentation in the rye or wheat caused the gluten to disappear, but today we grow grains that have the highest gluten content possible. It is the same with milk and dairy products.

It is only as a result of the great increase in milk consumption that illnesses are appearing that we didn't have or didn't have to this extent in times without any or with a lower milk consumption.

With milk, it often takes a long time for an illness to manifest, and the connections between milk proteins, lactose, and health problems are therefore not immediately obvious.

According to the book No milk by Dr. Daniel A. Twogood, the list above should be extended to include chronic neck pain, back pain, and/or headaches. Read the compelling book review. The author speaks about the experience he gained from working with over 3,000 cases.

1. Summary

Maria Rolliger goes back to the origins of humanity (human evolution) and then to the time when humans domesticated cattle and therefore cows. This was about 8,000 years ago.

History of milk production

At first, cattle were used mainly as draft animals and for meat. For about 3,500 years, they have also been used for their milk so that butter could be made. Cheese was only produced much later, and in about the year 1850, those in the higher levels of society began to drink milk.

Through breeding and using hormones and antibiotics, we have about tripled the weight of cows. As early as the Middle Ages, the milk yield for butter production was able to be increased from 300 to 600 liters per cow per year (p. 27). Today, the capacity of a cow is between 8'000 and 18'000 liters per year. Cows get inseminated just a few weeks after they give birth to a calf so that after the lactation period of about 310 days, they can have another calf as soon as possible and again produce milk.

Concentrated feed (fodder) instead of grass is the motto. We are shown the meat breeds that are allowed to graze freely, because they don’t have to give milk. However, there are exceptions, in particular, in the Alps in the summer.

Today, milk contains so much fat that a calf cannot drink it without getting sick.

But either way, calves are given substitute milk, which is called commercial milk replacer. The calf is not even allowed to suckle directly from the mother’s udder in order to get the very important colostrum (beestings, bisnings, or first milk).

Increasing industrialization of the dairy industry began after World War II and consisted of a large variety of processes, which Maria Rollinger explains in very understandable terms. This industrialization is also reflected in animal husbandry of cows and calves, which the author also describes.

It was not until about 1950 that milk production and processing (dairy industry, dairy farming, and creameries) began to multiply, which ended up making milk and dairy products become a central part of our diet (nutrition).

This development of dairy products becoming a main food item goes hand in hand with a huge increase in lifestyle diseases. The author avoids directly linking these though because too many other developments have taken place simultaneously.

Milk and dairy products contain a wide range of substances, which act very differently in each individual person—and that's the problem. As a result, the possible consequences of consuming dairy products are unfortunately quite varied. The book and the information presented here are therefore sometimes challenging to understand.

Reasons for diseases that are mainly caused by poor nutrition

She specifically deals with the reasons for diseases that are mainly caused by poor nutrition. She shows the path of absorption (food intake into the blood), processing by organs (e.g., in the small intestine), effects in the target area, and the resulting health problems.

She also compares countries that have only recently started to consume milk. Japan, for instance, which has the same stressful environment, but a completely different diet (nutrition). The differences include the fact that Japan has a very low rate of osteoporosis (brittle bones).

Osteoporosis is only a major problem in countries with a high consumption of milk and dairy products.

The author also explains the reasons for this and why Japanese people living in the United States have the same problems that we do after they have switched to the Western diet. She also shows how the dairy industry is even able to persuade lactose-intolerant people to consume dairy products.

She emphasizes why people who are lactose intolerant suffer even more than people who descended from northern Europeans. Thanks to a previous mutation, northern Europeans can tolerate milk quite well. But even they are not protected from the diseases listed above.

However, these processes are not the only factors involved in the milk disaster.

Products that have the potential to be healthy such as kefir, yogurt, quark, and cheese today not only go through a much more complicated process of denaturation, but they also contain additives, such as skim milk powder.

The author states that we really no longer even associate the white milk we drink with the animal it comes from and therefore no longer recognize it as a body fluid from an entirely different species.

It is very difficult to completely cut out milk and dairy products, but it is worth it—no matter whether you are sick or healthy. Look around and you will see how many people are already suffering at a relatively young age from unnecessary lifestyle diseases.

Two more book reviews show other reasons why this is the case. These book reviews are on the China Study and on Salt, Sugar, and Fat. And the book MILK The Deadly Poison takes up the problem of milk as well, providing a slightly different perspective. The links will bring you to the book reviews.

2. Book review

In the preface, Ulrike Martin Plonka, research assistant for Milk, better Not!, points out that the dairy industry is increasingly working to open up new markets in traditionally dairy-free countries. However, in these countries the people are usually lactose intolerant. The opening of new markets is carried out under the guise of development assistance (development cooperation and aid) with the support of governments. Yet these people will suffer even greater health disadvantages in the future than we will.

The best formula for infants

Ulrike Martin Plonka explains that the best formula for infants (baby food), (a topic not discussed in the book) is to nurse as long as possible, and that one should try to manage without using milk from other animals if possible.

It is astounding that milk consumption critics are often portrayed as untrustworthy, when the history of milk, the statistics, knowledge of current production methods, and ultimately the studies conducted by renowned scientists tell a different story.

The most important message and question

I quote here the most important message and question so that you can become familiar with the author's rigorous and fluid style.

Despite the propaganda of fit and sprightly people who are always ready to perform, we feel increasingly less healthy. Our life expectancy is increasing, so they say. But what good is a statistically long life, when a sudden heart attack can kill a 53-year-old or a 45-year-old gets breast cancer. Parkinson's disease, dementia, and Alzheimer's disease are occurring at increasingly young ages, and tumor diseases are beginning to affect more and more people of all ages.

Why is it that an increasing number of children are developing diabetes, asthma attacks, middle ear infections, and skin rashes, that attention deficient disorder (ADD) is something we encounter on a regular basis, and that intestinal problems, circulatory disorders, osteoporosis in women and in men, eczema, allergies, and food intolerances not only make childrens' but also adults' lives a misery?

Could it be that milk, the modern all-purpose food, has a part in this development? That it is not as healthy as is suggested by advertising, the food industry, and nutritional science?

In the introduction, Maria Rollinger clears up a misunderstanding regarding the importance and use of milk in biblical times. She explains the meaning of the Promised Land, where milk and honey flows as described in the Torah and in the Bible (Exodus 3:7–8 and Genesis 13:14f) about 3,300 years ago. Because milk was not drunk until the late nineteenth century, but was instead processed into butter and cheese (p. 18).

Butter production and the yield of a cow

While butter and concentrated butter (clarified butter) are simple to make, it was not until the ancient Greeks and Romans that good cheese was successfully produced. Vegetable fat could be obtained only as oil. Fat from milk could be acquired without having to kill an animal, but beef tallow or lard from pigs was only able to be obtained by slaughtering the animal. For nomads, butter was therefore clearly the ideal fat (p. 19). Note: Fish and plant-based fats and oils (edible fats, cooking oil) came into use much later.

Redaction comment

However, halloumi is thought to have been known in ancient Egypt and Arab countries. Halloumi (or hallumi, challúmi) is made according to an ancient Egyptian, or more specifically Arab method of cheese-making. Today, we know halloumi as a specialty in Mediterranean countries. It was originally made from mouflon’s milk, but today this semihard cheese—with its distinctive bell-shape appearance—is made from cow’s milk, goat’s milk, sheep’s milk, or a combination of these. Since halloumi has a high melting point, it retains its shape when it is grilled or fried.

You now need 21 liters of milk to make a kilogram of butter. In earlier times, two or three times that much was required given the lower fat content of the milk. Calves have been raised on milk replacers only since the twentieth century. In the Middle Ages, a cow yielded 600 liters of milk and of that about 250 liters had to be set aside for the calf (dairy farming).

At that time, however, the yield of a cow was only about 0.3 to 0.9 liters and very rarely up to 2 liters a day. The lactation period was 100 to 240 days. Even today, a cow can only give milk for a certain period of time after the birth of her calf. Today, however, the lactation period is usually 305 days (dairy cattle).

Redaction comment

Wikipedia (German edition) on the lactation period: Since 1937, cows have been injected with BST from cattle carcasses in order to achieve an increase in milk yield. Even higher yields have been achieved in the United States, where since 1994 cows have been injected with genetically recombined, artificial "bovinesomatropin" (rBST), called Posilac, from Monsanto.

"Monsanto sold Posilac and all rights to Elanco Animal Health, a subsidiary of Eli Lilly in August 2008. Posilac has not been approved in Canada or Europe."

"Inflammation of the cow’s udder can occur as a side effect, creating a pus which is excreted into the milk. As a countermeasure, an increased use of antibiotics is recommended. As a result, hormone ingredients and antibiotics are also present in the cow's milk."

For a discussion on milk and our lack of full adaptation to it, it is important to know that humans have only had domesticated animals, such as goats and sheep, for the last 12'000 years. And it was only 8'000 years ago that people in the Middle East domesticated cattle. Even more to the point, drinking milk, instead of processing almost all of it into butter or cheese, is a development which only began during the Industrial Revolution.

Prof. Dr. Norbert Benecke - Der Mensch und seine Haustiere (Humans and their pets)

The cow did not descend from the aurochs, which went extinct in 1626, as is commonly believed. Through comparisons of mitochondrial gene sequences, Prof. Dr. Norbert Benecke found that our current cattle have practically no genes from the aurochs, but that cattle descended directly from the urus.

Please also see his book "Der Mensch und seine Haustiere" (Humans and their pets) and an article from 2006 in the NZZ (New Journal for Zurich), which mentions Dr. Ruth Bollongino. For about a thousand years, the wild aurochs lived alongside the domesticated taurine cattle in Europe.

In particular, cows, who are female and more docile, were used as draft animals. They pulled the plow and sometimes still do so today. In addition, all of the animals mentioned above were also suppliers of meat (animal slaughter).

Redaction comment

Ms. Rollinger also includes dogs here (p. 29). About a thousand years before cattle, we had cats as pets. But even earlier than that, more than 30,000 years ago, we domesticated and/or bred dogs. The domestic pig came about 9,000 years ago. We call the above animals and other farm animals livestock. Humans domesticated the horse (equus = genus) at least 7,000 years ago and the donkey at least 6,000 years ago. Camels and dromedaries have been used by people for about 5,000 years. Camels were milk suppliers before the cow.

By the way, lactose is milk sugar and lactase is the enzyme that breaks down lactose.

Using data from the different time periods, the author informs us that we have been consuming “white milk” products in abundance only since the end of World War II. We have been drawing the wrong conclusions from the biblical vision of milk and honey.

The daily consumption of dairy products is not traditional

As we shall see, a life that includes the daily consumption of dairy products such as milk, butter, cheese, quark, yogurt, and milk chocolate is neither an established custom nor traditional and is most likely unhealthy as milk was used well into the nineteenth century almost exclusively for butter and cheese production.

It was not until the beginning of the industrialization era that people began to drink milk. At first, this was only in the better circles of society (see utopia).

With the rarely used terms alactasia and alactasiast, the author refers to the medical conditions of lactose intolerance, hypolactasia, milk sugar intolerance, lactase deficiency, and lactose malabsorption syndrome and also uses them to illustrate important ethnological factors. Lactase deficiency (lack of lactase enzyme) is the normal case worldwide for all mammals following infancy, thus also for humans.

2.1. History, p.23

Only once you trace the origins of Homo sapiens (humans), will you be able to understand just how new the modern habit of drinking milk is, explains Maria Rollinger. She further states that researchers have established that we have the typical characteristics of herbivores.

We lived on a diet based primarily on plants

This was based on the development of the teeth of primitive human fossils and on physiological conditions, such as our body's inability to produce vitamin C itself.

Carnivores (meat eaters), however, have short straight digestive tubes so that damaging decayed protein, the animal protein, can be eliminated as quickly as possible (p. 23).

Our typical long small intestine with intestinal villi is also a clear indication. In humans, the small intestine is longer and the colon (large intestine) is shorter than in other primates. Note: In addition, our intestines have folds and microvilli, which increase the surface area enormously.

Redaction comment

Evolutionary developmental biology, called evo-devo, or more recently also including the study of the environment called eco-evo-devo, gives us an understanding of the very long periods of time it takes, for example, to adapt a digestive tract to a different type of diet.

Since the 1980s, evo-devo has also included the processes in epigenetics. The term was coined by British researcher Conrad Hal Waddington in 1942 and is discussed in the book "The Epigenetics of Birds" (1952). This concept was previously not accepted because of the Weismann-Barrier Theory. Only since the 1990s, have we begun to realize its importance and impact.

As can be seen in other primates, we lived on a diet based primarily on plants with the occasional addition of animal products. The basis of our diet was mainly tubers, roots, and greens, (leafy vegetables and plants) such as rushes (juncus) and sedges (Cyperaceae), seeds, nuts, fruits, and berries. Our oldest diet probably also included beetles, snails, insects, bivalves, and eggs from a wide variety of bird species, and occasionally fish and the meat of small animals.

We have limited ability to detoxify ammonia (urea cycle) and in the long run can tolerate a maximum amount of 30 percent protein in our diet.

Animal food from larger animals was only consumed starting in the Upper Paleolithic period, parallel to the global development of the hunter-gatherer cultures.

However, even then the proportion of plant foods was always about 70 percent, says the author.

Human evolution

Human genealogical tree as shown by Friedemann Schrenk in "Die Frühzeit des Menschen".© Public Domain, Bwd, Wikipedia
(Prof.) Friedemann Schrenk, Die Frühzeit des Menschen. Der Weg zu Homo sapiens (The early days of humankind. The path to becoming Homo sapiens) C. H. Beck, 1997 and 2003, p. 122.

The Upper Paleolithic period began about 40,000 years ago and lasted until about 9700 BCE. At the same time, the migration of Homo sapiens to Europe began. The Neanderthals, who immigrated 130 thousand years ago, predominated at first. Both came from the Homo (2.5 to 1.5 million years ago). See also Homo rudolfensis, whose existence was ascertained only in 2012 (several discoveries) and who were, according to Wikipedia, predominantly herbivores.

There were special developments at various times and places, for example, a diet consisting mainly of large hunted animals in the last part of the Paleolithic period. This brought whole societies to the brink of ruin (p. 24).

How unbalanced diets became common as a result of excess production and specialization

About 12,000 years ago, animal husbandry and cultivation of land (agriculture) began during the time of the Neolithic revolution as people began to settle (sedentism), and unbalanced diets became common as a result of excess production and specialization. Archaeological research indicates this undesirable development. Note: This change occurred over thousands of years in different areas, and not all at the same time.

All types of grain and dairy products must be regarded as relatively new foods in the human diet as they were introduced during the Neolithic Revolution. Today, these have become our staple foods (p. 26).

It is therefore not surprising that many people suffer from intolerance to milk or certain grains (see also food intolerance).

Redaction comment

Grains with gluten, a mixture of proteins, can cause gluten sensitivity or even celiac disease (coeliac disease). Gluten intolerance is also called gluten sensitive, gluten-induced enteropathy, intestinal infantilism, and nontropical sprue or Heubner-Herter disease. It is a chronic disease of the small intestine due to a hypersensitivity to components of gluten, which are found in some grains.

Milk is still the most recent food item and adaptation to it is least advanced. In most people, no adaptation has occurred at all, since they do not consume dairy products.

The early history of milk and milk as the cause of many diseases

The author describes the early history of milk and the later use of dairy milk. This type of usage began with goats and sheep. Evidence of milk processing can be found in the Sahara Desert, Egypt, and Mesopotamia 6,000 years ago and in India, 4,000 years ago. Cow and bull gods (kujata, vala, vedic, and hathor) have existed since 3500 BCE. Maria Rollinger provides information about the various cults, such as the cult of Hathor and the Egyptian and Northern European Ice Age myths.

Butter was a luxury item, especially as a fat for cosmetic ointments and treatments for skin diseases. The Greeks and Romans were the first to recognize diseases caused by milk. Greek physician Hippocrates (460–370 BCE), who is considered to be the founder of medical science, described intolerance reactions to milk and cheese. Among the Greeks, butter was even considered unhealthy (p. 35).

After the classical Roman period, there were no further mentions of milk, butter, or cheese. The more recent history of milk, since the late antiquity, is virtually unexplored. The author assumes that the occurrences during this period of time could not be reconciled with today's well preserved belief or creed of traditional milk consumption and the concept of healthy milk.

Galen of Pergamon (Aelius Galenus or Claudius Galenus, Galen, approx. 129–199), the most important physician of antiquity, also found milk and cheese to be the cause of many diseases, as he practiced prophylactic medicine. He considered only whey to be beneficial for internal cleansing (p. 37).

Later physicians also linked cheese with severe digestion problems, headaches, and epilepsy. The cheese lover Pantaleone de Confienza (approx. 1417–1497) published the first book on milk and its products in a positive sense with his book Summa Lacticiniorum (1477).

But because of his observations, he also advised moderation. Cheese is healthy when served by a stingy hand. On his many journeys, he saw that some people became sick from consuming cheese, but that others showed better tolerance. He commented that the elderly in particular suffered more from asthma. He correctly described that milk curdles in the stomach and clumps and is therefore difficult to digest. He also pointed out that milk and dairy products are fattening.

Donkey’s milk does not curdle and is therefore the healthiest, wrote Galen. Like human breast milk, donkey’s milk contains little casein.

Ms. Rollinger further informs us that the Swiss physician and naturalist Conrad Gesner (1516–1565) came to the same findings as Galen in his book called "Büchlein von der Milch und den Milchprodukten" (About milk and dairy products), published in 1541. It describes 13 key findings in detail and summarizes the diseases observed to be caused by milk and cheese consumption.

Obstruction and diseases of the liver, kidney stones, bladder stones, catarrh (asthma), flatulence below the diaphragm (leading to pressure on the heart and heart problems), bloating in the abdomen, swollen abdomen, damage to teeth and gums, severe rashes (exanthem), spleen disease, suffocation (asphyxia), changes in vision, headaches, nervous disorders, dizziness, and epilepsy (p. 42).

Residual milk from butter processing was waste and used for pig feed. Until the nineteenth century, the yield of a cow was measured in pounds of butter, not in milk production.

Around 1800, a cow weighed about 250 kg and could be expected to produce between 600 and 800 liters of milk annually. Today, cows weigh more than 650 kg.

The farmer’s wife was responsible for the processing of milk, and the total profits from the milk processing consisted of 77 percent butter, 13 percent cheese, and 10 percent to feed to the pigs that were to be sold.

In Roman times, southern Europeans raised goats, but in northern Europe sheep were raised, primarily for their wool and less for sheep's cheese (p. 44). Between the sixth and twelfth centuries AD, northern Europeans started raising goats as well to use the hair, fur, meat, and milk. The milk was processed mostly to goat's cheese because goat’s milk is unsuitable for butter.

Greek goat breeds gave 100 kg of milk per year. Today, the yield can be 300 or more kg a year. In the year 1800 in Germany, the yield per goat was about 150 kg of milk, today an annual production of about 1,000 kg can be achieved.

2.2. From subsistence to industrial production (1870 - 1970), p.49

The author describes under subsistence (traditional economy), how much Germany’s population grew since its unification which established the German Reich (empire) in 1871 until 1914. In this time, the development of cities, the milk trade, and the practice of drinking milk arose.

Traditional economy

Farmers first founded milk depots from which milkmaids brought milk to households. Some milkmaids opened their own milk depots. Hence the expression “Milchmädchenrechnung" (literally “milkmaid's bill,” which in German is an expression meaning “naive assumption”).

At that time, the transport of milk was limited to the local vicinity because of its short shelf life. With a horse-drawn vehicle, for example, milk could only be transported within a radius of about five km and by rail approximately 30 km without spoiling (p. 50).

Illustration „La laitiere et le pot au lait“ from "The Fables of La Fontaine", spilled milk.© Public Domain, Grandville, Wikipedia

Redaction comment

The origin of the expression “Milchmädchenrechnung” (English: milkmaid's bill) given in Wikipedia is not as clear as in the book. The author’s explanation is more plausible, even if the term “Milchmädchenrechnung” is used today in a disparaging manner.

Maria Rollinger includes a table from 1882 to show an example of a weekly lunch program for the poor. Sausage broth or buttermilk was served on only one day of the week. A menu for four people included half a pound of barley in soup and six pounds of potatoes. The potatoes were considered the main component; 700 g per person was the average.

The locally restricted milk trade existed until the introduction of machinery, with butter still being the main product. Dairies were started with the introduction of milk centrifuges. The yield of butter was much higher, but a centrifuge was expensive. At this point, men organized the creameries, and a division of labor between dairies and creameries and sales cooperatives slowly set in.

Milk centrifuge in Neuhausen Folk Museum, Germany.© CC-by 2.0, Flominator, Freilichtmuseum Neuhausen, OK Walter Knittel
In 1878, Carl Gustaf Patrik de Laval, a Frenchman who lived in Sweden, further developed the milk separator, originally invented by Wilhelm Lefeldt or Lehfeldt (1836–1913), into a centrifuge in 1876.
Redaction comment

Paraphrased from the book: On behalf of king Napoleon III, Meges-Mouriés developed a method to produce margarine from beef tallow and skim milk in 1860. The margarine could be used as a butter substitute for the army. As of 1902, fat hardening (trans fats) was possible using techniques from Wilhelm Normann so that the margarine (for the poor) could also contain vegetable oils.

The first newspapers and publications about milk emerged in the 1870s. The propaganda was aimed at getting the poorer sections of society used to milk and dairy products (p. 57).

In spite of these attempts, as of 1914, these people still mainly lived off potatoes, bread, and fat, and drank brewed chicory (caffeine-free coffee substitute).

The first laws came into being because of milk adulteration (mixing milk with water, see also milk quality testing). Thanks to Louis Pasteur, heat treatment of milk began initially at 90 degrees Celsius (194°F). And thanks to Robert Koch, testing for tuberculosis (TB) and inflammation of the udder (mastitis) was conducted. Research institutions and funding organizations for the dairy industry were created later.

The production of artifical food and tuberculosis

The heyday of the production of artificial food (see BBC) began at the same time. This included margarine, which was also sold as butter, artificial wines (allowed in the EU again since 2006), artificial honey, artificial ice cream, sweeteners, and meat extracts. In addition, glutamate (glutamic acid) was used as a flavor enhancer, preservatives (food preservation), instant soups, and baby foods were produced, and experiments with food preservatives were conducted. See also food coloring.

The author describes how in 1880 only 0.3 percent of the pigs delivered to the Berlin slaughterhouse showed evidence of TB. By 1905, it was 47.5 percent. This was the case even though the milk used for animal feed was heated to 90 degrees Celsius (194°F) starting in the 1890s. Ms. Rabinowitsch-Kempner showed that bovine TB pathogen could also infect humans (M. tuberculosis).

In 1877, about 37 percent of the people in the German Empire died from tuberculosis of the lungs and more than 10 percent from diphtheria. By 1913, it was 15 percent and 2 percent respectively.

It's hard to imagine the living conditions (civilization, quality of life, and standard of living) in the cities at that time. The hygiene conditions were very poor, there was a high rate of infant mortality, many epidemics, long working hours, and no insurance, and the medicine was not comparable with the medicine of today. The infant mortality rate was 21.5 percent in the 1880s.

Babies were given porridge, mixed with dairy milk if possible. Hygienists and doctors claimed that the lack of milk supply for the townspeople was partly responsible for the high rate of infant mortality ... The great cholera epidemic took place in 1892 (p. 61).

A difference not to be underestimated: at that time, the children were given milk that came from one single cow.

Given the newly created milk processing, we now consume milk that is a mixture of milk from many cows. Without pasteurization, this leads to a large mixture of pathogens.

In the past, it was the poor quality of the drinking water that caused the human immune system to be overworked.

In 1879, a food law was passed that mandated certain controls and labeling requirements. In 1930, a Dairy Act (later called Milk and Fat Act) was adopted.

The Milk Act of 1930

Whole milk had to contain a minimum of 2.8 to 3 percent fat (butter fat). Today, fat content of 4 to 6 percent can be achieved.

The author explains many reasons why pasteurization was not made mandatory in Germany until the Milk Act of 1930. Since the animal diseases appeared to be defeated, the EU abolished compulsory pasteurization in 2006.

We also learn how the negative image of milk slowly but surely transformed into a positive one. Milk came to be considered “hygienic.” In 1928, the proceeds from milk comprised one-third of the total farm revenue.

The Nazis then introduced comprehensive state control of production, processing, trade, sales, and prices for all agricultural sectors. This was accomplished with the Milk Act of 1930, which included government authorization to forcibly merge producers (farmers) and processors of milk. The German Reich Food Industry Administration Law with market regulations (German Reich Food Industry Administration) was also created. This has been continued with EU market regulations.

The actual dairy industry arose only after World War II (Association of the German Dairy Industry). The Milk and Fat Act (Milch- und Fettgesetz) of 1951, enacted in 1952, already aimed at cheap mass production for mass consumption (consumer society, consumerism, followed by the throw-away society) and international trade (p. 67).

The rise of dairy industry

Complete control of the agricultural sector by the state was easy for the Third Reich to maintain after the initial introduction phase, and the politicians at the time considered it necessary in order to achieve their goals.

On two pages, the author describes how companies who felt ideologically committed to free competition introduced comprehensive economic policies. She also provides a comparison with the collective and state farms of the former Soviet Union and gets to the crux of the matter with this sentence:

Every industry produces according to the rules of assembly line logic and not according to the rules of nature.

In this way, power was passed from the producers of milk to the processing plants, industry, and trade. The result: cruelty to animals and abuse on a large scale.

Meat and bone meal for herbivores and ruminants, hormones and antibiotics for slaughter animals so that they reach their slaughter weight faster and don’t die of epidemic diseases beforehand, waste products fed not only to animals but also to humans (whey, waste hormones in glucose syrup, etc.), bacterially converted feces as a meat substitute, and finally genetically modified animals to increase yield.

Waste oil made into feed for chickens, nicotine in eggs, and the sale of rotten meat are no longer unusual.

Note on the above quotation: The case of nicotine in eggs was described in an article published by Die Welt (The world, a German newspaper) on April 4, 2006. The Lower Saxony Ministry of Agriculture temporarily suspended market leader, Deutsche Frühstücksei GmbH (Germany company that sells eggs). However, the company was able to lay the blame on the subcontractors. It affected no less than 128 Lower Saxony farms. Daily production of these farms was three million eggs ...

This development resulted in a huge accumulation of power held by just a few people. We learn more how the producers joined forces over time so that their operations became larger and larger. And how the industry also merged to form a limited number of giant enterprises and throw smaller companies out of the market. This had political support.

Before World War II, more than 30 percent of farms used cows as field work animals. In 1958, it was only 20 percent. They did not have to give milk continuously and never that much.

The normal age of cows was about 25 (20) years. Today, they are exhausted after four to six calving cycles and get slaughtered after six to eight years (p. 72).

Turbo high-performance cows

A cow that does not achieve 7'000 kg during her first lactation period is brought to the slaughterhouse immediately (p. 96).

Farmers in the US have achieved a milk yield of 18'000 to 20'000 kg within two lactation periods with turbo high-performance cows and the artificial "growthhormone" (recombinant "BovineSomaTropin", rBST) from Monsanto. The cows are sent to the slaughterhouse after four to five years (p. 97).

Today, however, the trend is toward just one lactation period, which by using hormones can be extended to 18 months or more, and the cow gets slaughtered at the age of three-and-a-half after having produced 18 tons of milk. The meat is usable for nothing more than ground beef (hamburger) and sausage processing (p. 98)

Until certain laws were passed in 1970, milk was a regional issue. Milk sours in one to one and a half days and previously turned into soured milk, but today it rots (putrefaction, decomposition). Using the technical facilities developed in the 60s for cooling, processing, and filling, lactic acid coagulation (lactic acid fermentation) can now be delayed by several days.


Since there were still too many reservations about pasteurization, sales of certified raw milk were still at 60 percent in 1960. The answer was to offer packaged milk, which in Europe surely began with the Tetra Pack. In this way, retail stores and supermarkets were able to supersede the milk dealers and milk shops.

Although homogenization had been a known quantity for decades, it only emerged in Germany in the 1960s. The freshness of the milk was no longer an issue. Because of the great reduction in the size of the fat globules, separation of the cream was significantly delayed and the milk was visually fresh.

Homogenization is responsible for certain adverse health effects such as allergies and intestinal damage, but this fact is still denied or ignored by the prevailing opinion in nutritional science (p. 75).

With UHT milk (ultrahigh temperature processing), the milk industry achieved a longer shelf life as of 1963. This is up to three months, and the industry soon was able to reduce its price below the price of fresh packaged milk. As a result, UHT milk had a market share of 40 percent in 1977.

Extensive processing greatly decreases the nutritional value, and this has been compensated for in recent years with the use of artificial additives.

Between 1960 and 1974, the sales of fresh cheese and quark increased by 124 percent, sales of fermented dairy products by about 1020 percent, and cheese by about 60 percent (p. 76)

In particular with yogurt, the industry opened up an additional market. Since 1965, the companies in the dairy industry have had the highest revenues in the food industry.

2.3. Consequences of industrial milk production and milk processing, p. 79

The EEC market regulations in 1968 brought overproduction (excess butter and milk due to economic interventionism) and the simultaneous collapse of small- and medium-sized enterprises (SMEs).

Overproduction and political work

Thanks to centrifuge technology, farms were able to separate the milk that couldn't be sold into cream and skim milk.

Cream was processed by the industry into butter and skim milk into skim milk powder (milk powder). The political work (lobbying, public affairs, government relations, by special interest groups, legislators, and the like) has paid off for the parties concerned because before the State had to take on both of these products at a predetermined price.

In 1983, West Germany alone produced 26.1 million tons of milk. A milk quota system wasn't put into place until 1984; it still exists today in the form of a milk guarantee regulation. This brought production down to 22 million tons.

Redaction comment

The EU lifted the milk quota on March 31, 2015 and also started six promotion programs for the dairy industry. See here for additional information. These come in addition to 14 ongoing measures, which are targeted primarily at exports—with subsidies that total 82 million euros. That is not a lot per EU inhabitant, but, in part, a catastrophe for other countries. Then there is also the meat industry that receives similar subsidies (CAP).

As a critical citizen, it is worthwhile to take the time to read the above link on the milk guarantee scheme. The organization is called the European Agricultural Guarantee Fund (EAGF). For me, the EAGF seems to be the highest type of economic trust, especially when viewed internationally—and is therefore the opposite of what is known as Rhine Capitalism. An important point here is the “refunds on exports to nonmember countries.” The subsidies and the economy of abundance are part of the reason why many Africans are fleeing to Europe. The subsidized exports ruin the farmers there, and some of them react by turning to extremism, while others have to flee. Viewed in the long term, we are digging our own grave.

The author details the changes for the farms and the new feed the cows were given, which included many unsuitable ingredients such as silage and concentrated feed from various products such as canola, maize, wheat, barley, and (until 2001) animal proteins.

Changes for the farms and mastitis in cows

The cheapest options available were chosen, which included waste products from the food industry such as soybean meal, rapeseed meal, rapeseed cake, soybean curd residue, peanut shells, coconut shells, residues from fruit processing, and fat from fat rendering (p. 81).

As part of the EU's common agricultural policy in the 1990s, the suckler cow premium, a new subsidy, was introduced for meat cows, that is cows (meat breeds) with a small udder that were allowed to graze on pastures. People from the city would see these beautiful cows in the pastures, some with their heifers (calves), and believe them to be dairy cows (p. 84).

The introduction of milking machines in the postwar years brought with it the problem of mastitis in cows. Today, forty percent of all cows in Europe are affected by clinical and subclinical mastitis. This is also partly because of the inappropriate care and feeding that are used to achieve a higher milk yield. Mastitis is extremely painful, and the use of antibiotics is necessary. In women, the disease is also called mastitis.

This milk has an altered bacterial flora and a lack of lactic acid bacteria. Instead, it contains somatic cells, i.e., body pus cells (pus). EHEC bacteria (enterohaemorrhagic escherichia coli bacteria) are sometimes involved in mastitis and can cause serious intestinal diseases in humans.

Dairy products are correctly suspected of increasing antibiotic resistance in humans.

In the US, the bacterium staphylococcus aureus causes 30 percent of severe mastitis cases. At the same time that it was detected in cows, infections with MRSA, or methicillin-resistant staphylococcus aureus increased substantially in hospitals, also in Germany (p. 85).

There is a law stating that milk should not be sold for human consumption during the time when a cow is receiving antibiotics. There are also specified limits. But given the large amount of milk produced at farms and the even larger amounts when the milk from several farms is combined, proving violations is all but impossible. Dairy farmers are well aware of this fact, including those who are not so honest.

Redaction comment

Antibiotic resistance is becoming an increasingly important topic. This resistance is explained well here. We would like to expect miracles from teixobactin, but we will have to wait and see. First, we need to start with livestock farming and what we eat. The development of resistance and viruses in hospitals tend to interest us only if they concern ourselves or our friends and family. Hospital-acquired infections are called nosocomial infections.

Maria Rollinger describes the changes to milk since World War II. These have to do with its bacterial flora, and fat and protein content.

Lactic acid bacteria, fat, proteins and harmful substances

First of all, natural milk contains lactic acid bacteria (lactobacillales, LAB). This causes the milk to acidify and after a day or two become soured milk with an acidic pH, which prevents putrefactive bacteria over a longer period of time. This is a natural form of protection against putrefaction (spoiling).

Despite the best hygiene in the modern milking systems, today's milk shows a ratio in favor of putrefactive bacteria, in particular because lactic acid bacteria develops well in warm temperatures.

However, through cooling the milk we suppress the lactic acid fermentation process. This helps the putrefactive bacteria “gain the upper hand” as they love the cold.

Even if we kill almost all of the bacteria with pasteurization and ultrahigh temperatures, the previously formed enzymes remain. This is why even unopened UHT milk eventually spoils. Milk can only have low values of good lactic acid bacteria and putrefactive bacteria—but only because of the long shelf life required by the dairy industry. The law indirectly confirms this. According to it, raw buffalo’s, sheep’s, and goat’s milk may only contain one and a half million microbes per milliliter, while raw cow's milk may only contain 100,000 per milliliter.

The buffalo’s, sheep’s, and goat’s milk is hand-milked (milking) or goes directly to processing.

In prehistoric times, milk contained about two percent fat, and a hundred years ago a maximum of three percent. Today, it is four to six percent.

Since the industry removes the greater fat content for butter production, it shouldn’t really matter to us. However, these fats today are made up of more of the harmful saturated fats (lipids). Instead of grass, cows are fed high protein concentrate feed and silage that are low in fiber.

Through selective breeding, the milk protein has been altered to contain more beta- and kappa-caseins.

These make cheese processing more efficient and improve the yield. Cheese producers want more and more designer milk from kappa-casein cows. No one seems to consider what effect these caseins may have on us.

Such milk also contains harmful substances: heavy metals and PCBs (polychlorinated biphenyls), disinfectants (usually chloroform), pesticides, herbicides, and residues of veterinary drugs such as antibiotics and hormones (see list). For quite some time now, the feed has been purchased directly on the world market and we have to expect substances that are prohibited in our own countries.

Even if the use of artificial "growthhormones" is prohibited in Europe, violations occur, which we only hear about when there are food scandals (list of food safety scandals).

Starting on page 91, Maria Rollinger writes about the suffering of animals. In this section, she quotes a translation of five key findings made in chapter three of the Report on Animal Welfare Aspects of the Use of Bovine Somatotrophin. Then she discusses the mistreatment of animals.

The suffering of animals

Administering of hormones is a major factor here. Various measures are taken to extend the lactation period of five to six months to about twice that.

The cows are kept almost continuously pregnant and therefore have to simultaneously be nourishing a new calf and providing a high milk yield. It is estimated that about 50 percent of the milk in Europe comes from pregnant cows, and in the United States about 80 percent.

This affects the hormonal balance of the animals, which is something that scientists at respected universities are now finally concerned about. They no longer rule out a connection between hormone-dependent cancers and milk consumption. In earlier times, cows were not milked when they were pregnant, no matter what country they were in. As a result, the flow of milk dried up.

The author describes the typical life of a cow until it becomes uneconomical and gets sent to slaughter. For one liter of milk, 500 liters of blood must flow through the udder. The trend is moving toward two lactation periods with a yield of 20 tons of milk; in the US, it’s moving toward a single prolonged lactation period with a yield of 18 tons of milk after which the cow is slaughtered.

Butchers at the slaughterhouse see cows' bones that are often porous enough to break. And now clone cows are being discussed, but so far there are only a few thousand of them.

2.4. Dairy product consumption long ago, yesterday, and today, p. 103

In the last thousand years, humans have lived on primarily various grains, meat, fish, legumes of all kinds, nuts, seeds, vegetables, oil, and small amounts of fruit, eggs, butter, and cheese. The amount of fresh dairy products has been minimal. At times, meat consumption has predominated (Late Middle Ages and the fifteenth and sixteenth centuries), and at other times, grains and legumes have been the major staple (seventeenth and eighteenth centuries).

Milk consumption in the last 140 years has increased by a factor of 24.

Cream emerged only in 1960 when electric beaters replaced whipped cream made by hand. Tables are provided, some with international statistics, that explain this development.

After World War II, fat and protein production experienced exponential "growing" until 1990.

It is interesting to compare the amount of milk that different countries consume; the milk consumption is particularly high in countries such as Finland and Sweden. The French and Germans, on the other hand, consume significantly more cheese—with roughly the same high intake of dairy ingredients since a kilogram of cheese equals about ten kilograms of milk.

Consumption of milk or dairy products for the Chinese was reported to be 12 kg per person for the 2002/2003 season, followed by South Africa (30.4) and Japan (37.6). Top consumers are Finland (196.8), Ireland (172.3), Sweden (170.1), Denmark (163.8), Netherlands (150.7), Spain (141.7), France (131.6 ), Portugal (125.7—used to be much less), GB (125.9), Germany (123.9), Australia (112.8), New Zealand (110.8), and Switzerland (106.8—as of 1995 it was 119.3).

Based on a lack of and later on limited figures from statistics and other sources, the author concludes that the practice of drinking milk has played a negligible role. Virtually everything can be found in statistics, but nothing about milk. Since 1930, this has changed, at least in Germany.

2.5. Milk, lifestyle diseases, and intolerance of basic foods, p. 115

The scientific mainstream still refuses to recognize links between specific environmental factors and diseases, unless they concern substances that have been identified as toxic.

The sad situation regarding statistics

With the section “Disease and environment—scientific dispute without end,” (Krankheit und Umwelt—wissenschaftlicher Streit ohne Ende), the author points to the sad situation regarding statistics and insights gained from them. She criticizes the fact that the scientific mainstream still refuses to recognize links between specific environmental factors and diseases, unless they concern substances that have been identified as toxic.

At the most, they admit that environmental factors such as diet play an important role. But as soon as a specific environmental factor or substance is questioned, the mainstream denies any link.

The mass media immediately reports answers such as: A causal relationship has not been or not yet been scientifically proven” or “further research is necessary.” Only a few dare to take a definite stance because the study to prove the contrary has already been commissioned. Every scientist faces the dilemma of not being one hundred percent sure about their assertion (p. 115).

With such contradictions, the question arises as to how far research is driven by special interests, writes the author, a lawyer herself, carefully on page 129.

For such topics, scientists must develop epidemiological studies, compare statistics, make cross-country comparisons, and conduct interviews with subjects (epidemiology). In particular, long-term studies (long-term experiment), which might have staff turnover, may have to include reservations and other possible views. Usually there are other factors involved that could affect a result.

Special interests and loyalties of the parties involved dominate the game and as a result general disorientation arises. Authorities, doctors, and patients around the world usually react with uncertainty. The author recalls the example from April 2002 with the carcinogenic acrylamide contained in chips, fries, and similar carbohydrate-containing products.

The Western lifestyle diseases such as diabetes mellitus, cardiovascular disease, osteoporosis, cancer, chronic inflammatory bowel disease, multiple sclerosis (MS), Parkinson's disease, allergies, and asthma were as rare in Japan as dairy products. It was not until they adopted our staple foods made from milk and grains that these diseases appeared.

What is causing the high and increasing number of lifestyle diseases

The answer to the question as to what is causing the high and increasing number of lifestyle diseases should be as simple as possible. The simplest and most frequent phrase is: Stress, lack of exercise, and a low-fiber diet.

However, people in Japan and China have at least the same level of stress, or perhaps even a greater level as they have to work many more hours. Many of them also eat low-fiber foods. However, their milk and dairy product consumption is much different from our own (p. 117).

Milk and breast cancer

What does the expression rich women's disease denote? This is the colloquial term for breast cancer in some areas because breast cancer occurs mainly in societies where people can buy and consume a large amount of animal protein.

According to figures from the World Health Organization (WHO), there is a clear correlation between the consumption of dairy products and the frequency of breast cancer (correlation). A comparison between West Germany and the former German Democratic Republic (GDR) shows the same. The later increase in new cases of breast cancers in the GDR also correlates with the increase in milk consumption. The increased milk consumption brought with it increased rates of breast cancer, but because of the much lower consumption of cheese the figures remained significantly behind those in the western States of Germany.

According to Jane Plant (p. 167), in China breast cancer is commonly known as the rich women's disease. The Atlas der Krebssterblichkeitsrate in der Volksrepublik China (Atlas of cancer mortality rates in the Peopleʼs Republic of China) and WHO statistics for China, Japan, Thailand, and western countries show the same relationship for both breast cancer and prostate cancer.

In these countries, there has been an increase of both types of cancer in cities that are oriented toward the West. A study from 2003 shows the major changes that took place in Japan after World War II. These were particularly in urban areas where people began to consume milk, ice cream, chocolate, and cheese, all products containing milk. They acquired these habits from the American victors (p. 123).

Jane Plant writes, If breast tissue is continually bathed in fluid that has increased levels of "growthfactor" which by nature sends signals to females in puberty that it is time to develop breasts and/or contains a hormone which is of great importance for milk production in mammals, then is it really a surprise that errors occur in cells that lead to cancer? (p. 124)

Milk, diabetes mellitus and multiple sclerosis

It is well established that consumption of dairy milk in infancy and early childhood significantly increases the risk of juvenile diabetes type I. Studies from Finland and Canada are definitive, but in the United States and Germany, the dairy industry still vehemently tries to deny this.

Certain whey proteins (serum albumin and beta-lactoglobulin), but also certain caseins are regarded as substances that trigger immune responses and thereby increase the risk of diabetes type I. For example, the bovine serum albumin is similar to a human protein produced in the pancreas, which plays a role in "insulinproduction".

If young children consume dairy milk, they develop antibodies against the foreign proteins. The antibodies that develop to work against the bovine serum albumin are also aimed against their own pancreatic protein, presumably because the antibodies cannot distinguish the bovine serum albumin from the human protein (p. 119).

Two new Scandinavian studies show that insulinotropic effects of milk proteins can also cause diabetes mellitus type II, the adult-onset type of diabetes. In addition, the study established that milk, cheese, and in particular whey increase "insulinsecretion" considerably more after consumption as compared with meat, fish, gluten, or white wheat bread.

Canadian studies from 2001 that are so far unchallenged, show that type I diabetes and multiple sclerosis (MS) are immunologically very similar diseases, and the autoimmune reaction (autoimmunity) affects both the pancreas and the nerve tissue that is compromised by Ms. Maria Rollinger describes an interesting study by Ashton F. Embry on MS, which shows that the contributing dietary factors of milk, animal proteins, yeast, and legumes (fabaceae) play a role (p. 121).

Epidemiological considerations also lead to the same conclusion as the author shows with a comparison between Finland and Spain. Spain was in the group of the lowest milk consumers in the EU until the late 1990s and even in 2000 had only half the consumption rate of Finland. The rate at which diabetes increased corresponded with the milk consumption.

Milk and cardiovascular diseases

The author provides numerous epidemiological comparisons, including some with cardiovascular diseases, which show this link directly. She compares Finland and Greece. The result was the polymeal concept (polymeal as a natural alternative to polypill) used for the prevention of cardiovascular diseases, better known as the Cretan diet or Mediterranean diet. But this is more of a marketing idea for olive oil, wine, and chocolate.

Nonetheless, the diet is dairy-free and according to the author includes fish, dark chocolate, fruits, vegetables, garlic, almonds, and moderate wine consumption.

Redaction comment

The reality is different in these countries, and the mortality rate isn't lower. Instead, people die of other diseases. Diets are unfortunately very much a result of trends and worldviews instead of proven health benefits. It is particularly parties with a vested interest that play a major role. For example, canola oil would be healthier than olive oil, but a strong lobby for olive oil has successfully driven the market for more than two decades now.

Milk and prostate cancer, malignant ovarian tumors and Parkinson's disease

We know that the calcium in milk and other dairy products isn't absorbed into the bones because of the pH, but that it saturates the blood which inhibits the formation of Vitamin D. However, Vitamin D is important in the differentiation of healthy prostate cells and also helps to prevent cell proliferation.

Various studies have shown a direct connection between malignant ovarian tumors (ovarian cancer) and milk consumption (lactose). Studies conducted by Harvard Medical School in the United States and the Karolinska Institutet in Stockholm, Sweden, confirmed exactly this in 2004.

Concerning Parkinson's disease, studies at Harvard University have shown that consuming dairy products several times a day can lead to an increased risk for Parkinson's disease in men, but not in women. The results of this study were confirmed multiple times between 2002 and 2007, primarily by Chen.

Milk and autism

In the case of autism, there is usually a functional disorder of the intestine. This leads to the release of larger protein particles (peptides) into the bloodstream before they are fully digested and has adverse effects (leaky gut syndrome).

It is well known that in most cases a diet free of dairy and/or wheat products leads to significant improvements of the symptoms. If a person goes back to their normal diet, the symptoms return (p. 125).

Studies have shown that the urine of children with autism contains unnaturally high concentrations of opioid peptides of the milk protein casein and the wheat protein gluten. These are called casomorphins and gliadorphins or gluteomorphins.

The author recommends several websites for parents that can be of great help with this topic and lists the following researchers in the field of autism: Robert Cade (US), Paul Shattock (Great Britain), and Kalle Reichelt (Norway). See also gluten-free, casein-free diet.

Milk and acne, eczema and allergies

The author criticizes the medical system for the fact that patients with acne and eczema are treated for months or years with cortisone and the like without any great success. It is only when they take the time to research that they learn how they can easily avoid allergens. Then they usually experience long-term success or are even cured.

The main allergen is most often milk (p. 126).

At least there have been signs of a change in thinking since Harvard Universität (Adebamowo, Dermatology/Online Journal, 2006, May 30, 12(4), p. 1) established a connection between milk consumption and acne.

There was a significantly higher level of visible air pollution during the era of East Germany, but allergies were much less common than in West Germany. After reunification, the air pollution decreased and the people in the eastern part of Germany started to eat more like those on the western side; within just a few years, the number of allergies had increased dramatically.

Based on various examples from a number of countries, we see that the Hygiene Theory (Hygienetheorie) or the Hygiene and After-School Care Club Theory (Hygiene-/Horttheorie) of not knowing about the differences in living conditions in East Germany in comparison to the situation in West Germany and other countries is evidence that apart from the air diet is the most lasting and strongest environmental influence for us. But this fact is about the last thing that politics, academics, and business want to acknowledge publicly (p. 129).

In line with the Farm Theory (Hoftheorie), we would tend to assume that children living in the country are less susceptible to allergies than children in rural areas. However, at the other end of the world, exactly the opposite is true. Children in New Zealand who live on farms suffer from allergies more frequently than children in cities.

In this case, a connection between hay fever and yogurt consumption was established. The same goes for atopic eczema and the consumption of raw milk. The author writes, in light of such contradictions, you have to ask yourself to what extent research is driven by special interests.

Milk and rheumatoid arthritis

Even with rheumatoid arthritis, histamines have been found in the inflamed areas of affected joints. People who suffer from this condition develop antibodies against certain foods, often milk proteins. This is something that has been known in traditional medicine for some time.

But since 2006, modern medicine has also known that an allergen-free diet can have a curative effect. This is the result of studies conducted by Binstadt et al., in Nature Immunology, 2006, Mar., 7(3), pp. 284–292 (PubMed) and Hvatum in: 2006, Sep., 55(9), pp. 1240–1247 (Link to

Milk and attention deficient disorder

Attention deficient disorder (ADS), sometimes together with hyperactivity (ADHD) are also linked to diet. The author writes that anyone who has ever watched a child who is playing quietly and then goes berserk half an hour after eating a chocolate bar knows what we are talking about.

She goes on to say that we shouldn't be surprised that so many children who eat primarily pasta, pizza, bread, hot dogs, chocolate milk, candy bars, pudding, and ice cream, develop these kinds of diseases. After all, all of these foods contain gluten and milk proteins. She then recommends valuable books on the subject.

It has been shown that human beings have not yet adapted to grains and milk, which, seen historically, are new foods.

Gluten consumption and celiac disease

The author addresses the problem of intolerances to staple foods, which actually shouldn't exist.

The basic vegetarian diet in other parts of the world consists of gluten-free plants such as corn, potatoes, millet, yams, cassava, bananas, and rice. But since farming began, we have been eating foods that contain gluten such as emmer, a primitive form of wheat and spelt.

Yet, even for us, it has been less than 100 years ago that we replaced gluten-free foods such as millet, oats, and buckwheat, as well as all types of vegetables with foods containing gluten. Even oats are normally no longer entirely gluten-free as a result of residues from the previous processing of wheat, rye, and other forms.

And we even grow special kinds of durum wheat that contain more gluten than common wheat so that the food industry can work better. Gluten has a high water-binding capacity and is therefore added to dairy products such as yogurt, ice cream, and chocolate as well as to all types of convenience foods.

The grain varieties containing the most gluten such as wheat, rye, and barley, as well as dairy products have formed the basis of our diet only for the last several decades, but we call them our staple foods.

In the past, slow fermentation in the rye or wheat caused the gluten to disappear, but today we grow grains that have the highest gluten content possible. And now the physiological inability or poor ability of many people to adjust to grain types containing gluten is taking effect. As a result, related illnesses are emerging. Intestinal damage in the form of celiac disease develops unnoticed over long periods of time.

It is only as a result of the great increase in milk consumption that illnesses are appearing that we didn't have or didn't have to this extent in times without any or with a lower milk consumption.

With milk, it often takes a long time for an illness to manifest, and the connections between milk proteins, lactose, and health problems are therefore not immediately obvious.

People only react quickly in cases of intolerance, at least that was the case in the past. Through intensive processing, the digestibility has been improved, and the stomach and intestines no longer react by sending warning signals.

Today, milk is similar to gluten; it has become a cause of illness that is silent and hidden in almost everything, and those affected cannot get rid of it without taking further action (p. 133).

2.6. Lactase, p. 135

In this chapter, the author examines the components of milk and divides milk into water, lactose (a carbohydrate), fat, proteins, minerals, and hormones. She explains how we produce the enzyme lactase (β-galactosidase) in the mucosal cells of the brush border in the small intestine (microvilli).

Lactase and lactase deficiencies

Lactase is essential for the necessary breakdown of the disaccharide lactose into the two monosaccharides, glucose and galactose.

We can only take up energy substances into our blood after they have been broken down. As such, glucose serves as a direct energy source, whereas galactose has to first be converted to glucose in the liver.

Maria Rollinger explains the three types of lactase deficiencies: congenital lactase deficiency, secondary lactase deficiency, and primary lactase deficiency, the most frequent type. This type cannot be reversed and is based on genetic disposition.

Genetic mutations

Genetic mutations from earlier times make it possible for the majority of northern Europeans to complete this division both in infancy and in later stages of life. If this special capability is not present, as in the case of the majority of the world's population, the disaccharide lactose then travels to the large intestine, where bacteria break it down. This results in a fermentation process that includes flatulence.

Depending on the person and the amount of dairy products they consume, this may also cause queasiness, abdominal pain, diarrhea, constipation, or other ailments. This process can produce butyric acid, lactic acid, acetic acid, short-chain fatty acids (halitosis), ammonia, and metabolic toxins.

Over the years and decades, this can result in serious health problems or a chronic calcium deficiency. In this context, the author lists damage to the intestinal mucosa, kidney stones, and cardiovascular disease. The relevant sources are provided.

This genetic mutation, which probably occurred in the peoples between the Ural mountains and the Volga river between 4600 and 2800 BCE, pertains primarily to northern Europeans and, naturally, also those who emigrated. This mutation is passed on as a dominant gene, whereas the deficiency in lactase is recessive. The most recent paleogenetic study that included skeleton investigations of northern and central Europeans who lived before 5500 BCE show that they were not yet mutants. The publication from March 6, 2007, astonished even those in the scientific world (p. 137).

Three mutations are also known for eastern Africa. They developed independently between 4800 and 700 BCE in various gene segments (gene) and differently from the mutation in northeastern Europe. The three ethnic groups that can produce lactase are the Tutsi in Rwanda and peoples in the Nigerian delta, such as the Fula people (Fulani, Fulɓe) and the Hema people.

Also in India, in the state of Punjab, it is estimated that only 30% of the people are lactose intolerant. And only about 10% of the Hamites in Arabic regions are lactose intolerant (see also Hamitic Theory). For Germany, the author calculates that more than 12 million people are lactose intolerant, with certainly a quarter of these originally coming from other countries.

Only few "Westerners" seem to know that about 80% of the world's population are lactose intolerant as adults.

Illnesses such as infectious diarrhea (gastroenteritis), colitis, Crohn's disease, and celiac disease/celiac sprue, serious undernourishment, or a bacterial overgrowth syndrome (e.g., small intestinal bacterial overgrowth) can cause secondary lactase deficiency.

Asians, Africans, and indigenous peoples

However, congenital lactase deficiency is the congenital inability to produce lactase and is very rare. It is fatal if left untreated.

But people who can produce lactase do have varying abilities to digest casein. In Europe, there is a North-West and a West-East divide.

The author compares Asians, Africans, and indigenous peoples. For example, the Indian people primarily drink buffalo milk (from water buffalo), and this is only as a supplement to their diet and is not drunk regularly. The author points to the following: When yogurt and butter are made in the traditional way, they don't contain any or contain only very small amounts of lactose so that they can be consumed by primarily lactose-intolerant people (p. 140).

It is primarily indigenous people who are adopting Western customs and habits. And they are doing this without knowing that they are lactose intolerant. This causes so much damage to their bodies that their performance sinks to a minimum and unemployment becomes rampant. They then often suffer from diabetes and obesity, whereas they used to be slim and particularly productive.

Now, instead of researching lactose intolerance, scientists are searching for specific genes that may have caused this. To give an example of this phenomenon, the author cites the Prima People from Arizona who adopted our diet between 1970 and 1980.

Good to Eat: Riddles of Food and Culture

Maria Rollinger refers to the book Good to Eat: Riddles of Food and Culture, in which Marvin Harris shows on page 138 that there have been cases of diplomatic tension as a result of milk powder deliveries to countries with primarily lactose-intolerant people.

In connection with CARE Packages delivered to Afghanistan on October 7, 2001, the wise decision was made not to send any milk powder or dairy products (FAZ Oct. 9 and 11, 2001). Responsible leaders in African countries also understand the problem of intolerance and when aid shipments arrive, they exchange milk chocolate for other things, even if critics think that this is corruption.

Politics or calculation? It can hardly be ignorance.

The author shows the problem of poor people in the Unites States who are Hispanic or African American.

It is school children who particularly suffer—also because of the lactose that is found in many convenience foods. The industry is pushing for the globalization of milk consumption and simply doesn't talk about the health problems involved.

In China, milk consumption was practically nonexistent in 1970. In 1980, it was about 1 kilogram per person for the year. In 1990, 3 kilograms; 1995, 5 kilograms; 2000, 6 kilograms. And in 2005, a total of 18 kilograms per person. And that is still quite a small amount in comparison to Germany, but the Chinese population is almost entirely lactose intolerant. The statements made by associations, dairy product manufacturers, and machine and system manufacturers give the impression that the new El Dorado has been discovered (p. 146). But they are not the ones who have to deal with the suffering and health-care costs.

Horizontal blue bar statistics on milk consumption in 39 countries in kg per capita.© CC0, Wikipedia, Foundation Diet and Health Switzerland
Kilograms of milk and dairy products consumed annually by each person. Countries such as India, Japan, and China are not on the list as their milk consumption is (still) far below this level.

The author explains that those responsible for the health system speak with powerful eloquence of the 71 billion euros that diet-related illnesses cost, but given the lack of understanding of the problem and/or the ideological position, research on the causes of illnesses related to the environment and diet” is not tackled. That would be uncomfortable and unpopular (p. 153).

Loobying for milk

It is precisely because this concerns so many people that the dairy industry is lobbying so offensively for milk via the Dairy Marketing Board (DMB).

It is financed, similarly to the Centrale Marketing-Gesellschaft der Deutschen Agrarwirtschaft (Central marketing association for German agriculture), with money from a fund regulated by public law. The DMB has excellent financial resources and can finance huge advertising campaigns for dairy products” (p. 149).

In addition, the industry also conducts short-term studies which show lactose-intolerant people to have a certain level of tolerance. However, the studies don't mention the fact that long-term studies have proven exactly the opposite. The author finds it disturbing that disinformation is also widespread in Germany—and that it is financed with public money. And above all, consumers often know too little or nothing at all regarding which products have milk powder added to them.

The medical literature from the last thirty years is full of evidence that a large number of the symptoms related to irritable bowel syndrome, enteritis, allergies, asthma, and obesity, for young children also frequent ear infections, in addition to the diseases arteriosclerosis, diabetes, MS, and Crohn's disease, as well as various types of tumors are connected to the exorbitant amounts of milk and dairy products we consume (p. 152).

A bit cynical, she continues as follows: The people affected are usually on an odyssey through doctor's offices and clinics for many years as a result of their allergy symptoms, asthma problems, kidney stones, and illnesses related to the intestines, skin, heart, circulation, and rheumatism. Only rarely do they truly find help. If they are lucky, a doctor or naturopath will tell them something about abstaining from milk. If improvement is immediate, then the medical and pharmaceutical fields have lost one of their permanent patients.

The author expresses strong approval of the fact that even physicians don't warn lactose-intolerant people about consuming milk.

A study in the Netherlands that lasted 11 years (European Journal of Gastroenterology and Hepatology, 2001, Aug., 13(8), pp. 941–944) showed that patients with irritable bowel syndrome (IBS) who were lactose intolerant decreased their doctor's visits by 25 percent when they maintained a lactose-free diet.

Instead, people try to find entirely different causes for the North-South divide of lactose-intolerant adults, for example, a lack of Vitamin D production because of too little sun.

Lactose intolerance and vitamin D

Ms. Rollinger explains how vitamin D, actually a hormone, is formed and how it functions as a calcium transporter in humans.

Too much vitamin D can be fatal, but in small amounts it is essential. The author speaks about the control mechanism for skin pigmentation (melanocytes) and the second way, the lactase-lactose complex. There are studies that show that the calcium supply decreases as a result of milk consumption, but the author comments, it doesn't seem that research into the causes of calcium absorption is wanted—it's a sensitive issue (see also Taboo food and drink).

2.7. Milk, calcium, and contradictions, p. 157

Calcium has several important physiological functions. Up to 99% of the calcium in the body can be found in the bones and teeth, but it also plays a role in many other places. Our body needs to maintain a certain pH value in the blood and does this by regulating the calcium levels very closely. In this context, the author lists the important role that calcium plays along with magnesium in the functioning of our heart, the regulation of saltatory conduction between the nerve cells, and the significance of calcium for blood coagulation (hemostasis).

The author explains how government agencies and health officials repeat the formula “Drinking a lot of milk = a lot of calcium for the body.” This happens despite the fact that we have global statistics at our disposal that show the opposite. It is true that milk contains a lot of calcium with 120 (to 160) mg/dL, but this is similar to a number of vegetables, for example, chives with 130 mg/100 g, kale, white beans, fennel, and spinach. However, you will find a much higher amount of calcium in sesame seeds with 780 mg/100 g, amaranth with 490 mg/100 g, flaxseeds with 260 mg/100 g, and almonds with 250 mg/100 g.

Why does consuming dairy products not result in bone health?

Our body uses about 30 to 40 percent of the calcium we consume. Depending on our food intake, a large amount of calcium can be lost through our urine. Consuming too much protein is the major cause of calcium loss. Dairy products, meat, and eggs, in particular, contain high levels of sulfur-containing amino acids (amino acid metabolism—see protein metabolism) and sodium, which are responsible for the high level of calcium loss.

In addition, the methionine found in cheese, quark, yogurt, and other fermented dairy products is responsible for a large amount of calcium loss. The author uses a diagram to show how excess protein causes a loss of calcium (box on p. 160). The calcium serves as an acid neutralizer. If there is not enough calcium available, our bones end up serving as the donor.

Almost none of the soft, hard, or sliced cheese today contains free calcium. Instead, the calcium is attached to proteins. This is why the dairy industry uses homogenization to try to obtain improved digestibility.

Milk is low in magnesium, but magnesium is necessary for calcium transport and absorption. In addition, the proper balance is important for the functioning of the muscles, heart, and nervous tissue. Vegetables are one of the best sources of magnesium—and in vegetables, it is found in the calcium-magnesium ratio we need.

We also read that phosphates, oxalates, phytin, fiber, alcohol, and coffee act as calcium antagonists and calcium killers. In addition, the phosphates in other animal products and also in grains lead to a less than optimum calcium-phosphate balance, which causes additional calcium to be excreted in the urine.

The author finds the text titled “Was Sie über Osteoporose wissen sollten!” (What you should know about osteoporosis!) published by Orion Pharma GmbH to be particularly distasteful. It is disturbing to see publications in the medical and pharmaceutical fields which, for example, list spreadable cheeses as a source of calcium, although it is one of the foods with the highest levels of phosphates (p. 162).

Oxalic acid is found in spinach, Swiss chard, rhubarb, red beets, and green and black tea. Phytic acid is found in the bran of almost all grains and binds to the calcium present to form an insoluble complex. This is why a “whole grain diet” isn't healthy when it isn't balanced.

When lactose-intolerant individuals consume dairy products, the lack of lactase reduces the absorption of calcium; this is why people who are lactose intolerant have higher rates of osteoporosis.

A recent study conducted by Harvard Medical School established that neither milk nor a high consumption of calcium reduce the risk of fractures for postmenopausal women. A reduction was seen only as a result of vitamin D intake (p. 164).

Finally, Maria Rollinger explains why calcium is not ideal for losing weight and shows how without calcium from dairy products, health could be improved worldwide. She refers to the lawsuit that the Physicians Committee for Responsible Medicine (PCRM) has filed.

Interesting and enlightening is the fact that the WHO recommends 400–500 mg/day of calcium for those in “nonmilk countries,” but 900–1,500 mg/day for those in “milk countries.” The majority of people still live without following Western nutrition patterns, without dairy products and calcium substitution, and therefore practically without osteoporosis and with a much lower incidence of lifestyle diseases. But for how long?

2.8. Milk ingredients and resulting problems, p. 167

Today, milk is made up of 13% dry components and 87% water. The dry components consist of 4.8% water lactose, 4% fats (lipids), 3.5% proteins, and 0.7% minerals, enzymes, hormones, foreign substances, and vitamins, which are partially dissolved in water. The effect that the enzymes and hormones have on us has not yet been sufficiently researched.


The author explains how lactose, the carbohydrate in milk, also called milk sugar, is a disaccharide. Lactose is a highly problematic substance for those who are lactose intolerant, and dairy products contain higher amounts of lactose than they used to. Lactose is also mixed in with other products.

Milk powder and whey powder are actually waste products resulting from the processing of milk. They contain up to 70% lactose. Since it costs a lot to dispose of waste products that arise during food production, people have tried to make use of these. They can be easily hidden in quark, yogurt, cheese, and ice cream. Most importantly, lactose very effectively binds water and therefore increases the dry matter content. Unfortunately, lactose is also used to make organic dairy products thicker, the exception being hard cheese.

As lactose only sweetens substances very slightly, it is barely noticed. Lactose also serves as a base substance for pills and tablets and for bacon and in the production of sausage. Bread, rolls, and other baked goods are also affected. And you can find lactose in frozen vegetables and processed foods such as sauces, canned fish, and convenience dishes.

Lactose also binds flavors, a process that is used for spice mixes and instant coffee. In 2006, McDonalds had to admit that their fries in the United States contained ʽnatural flavorsʼ derived from wheat and dairy products (p. 168).

Lactose is often listed as powdered milk product, whey powder, milk powder, milk protein, but in dairy products such as these, this type of labeling is redundant.


Milk contains a large amount of galactose, a monosaccharide that only lightly sweetens, and which is otherwise only found in any significant quantity in legumes. In comparison, milk, yogurt, and quark contain about 2,750 mg/100 g while other foods apart from dairy products contain at maximum far less than 10% of this amount. For example, kidney beans contain 153 mg and lentils 116 mg.

Other foods have much lower levels—for example, tomatoes are considered to be a vegetable that contains a lot of galactose at 23 mg, but they actually have less than one percent of the amount milk contains.

Galactose is important for the body, and the body therefore produces it itself and in the proper amount. This can also be seen in the fact that in our evolution we have consumed galactose in only the smallest amounts, except for during infancy. Brain development may be a reason why the breast milk of humans contains more galactose than the breast milk of any other mammal, namely 3,700 mg/100 g.

When people who are lactose tolerant consume milk and dairy products, the enzyme lactase breaks down the lactose into the two monosaccharides glucose and galactose. Glucose serves as a direct energy source. However, the liver has to use various enzymes to convert galactose into glucose. If one of these enzymes is not available in sufficient quantities, the galactose that can't be converted circulates in the blood and acts as a toxin.

Galactose plays an important role in cell and brain metabolism, but too much of it can have a negative effect. The author cites galactose as one of the causes of cataracts and infertility. Cataracts are caused by the accumulation of galactitol (dulcitol, in the sugar alcohol of galactose) in the eye lens.

Today, newborn screening can detect the rare (1 in 40,000) genetic metabolic disorder galatosemia, which normally results in death within a very short time. The treatment consists of a lifelong diet that is lactose-free and low in galactose. Lactose-free milk still contains galactose and would therefore be damaging as the lactose has simply been broken down and is present as galactose.

Galactose attacks the ovarian germ cells. As a result, those who consume high levels of lactose have a higher risk of ovarian cancer.

It seems that consuming more milk has effects on fertility for women. American and Finish researchers showed a clear connection between milk consumption and female infertility in a broad study in which they analyzed fertility data from 36 countries, the milk consumption per capita, and the occurrence of lactose intolerance in the female population (p. 172).

Other studies have shown the same.

A German study on testicular cancer from 2006 showed that the gonads or male testicles also suffer as a result of galactose.

An excess of galactose can also lead to disorders of the nervous system, problems with fine motor skills, and intellectual disability. Particularly when people are older, the function of the enzyme galactokinase is severely limited. The enzymes lactase and galactokinase were originally only physiologically necessary for infants. Maria Rollinger provides us with the comparison that we would have to eat either 82 kilograms of carrots or 36 kilograms of tomatoes in order to get the same amount of galactose that is contained in one single serving of yogurt (250 g, about 1 cup).

Galactose binds to and usually occurs as lactose, raffinose, stachyose, verbacose, and in thickening and gelling agents such as agar, locust bean gum, rubber and pectic substances, carrageenan, and edible seaweed (p. 169). Milk chocolate, ice cream, and other dairy products contain a relatively large amount of galactose. The food industry adds galactose to ice cream to improve the production process and final product (see also fructose malabsorption).


Butter contains 240 mg/100 g of cholesterol and Gouda cheese contains 115 mg/100 g. This is more than with most types of meat, which contain about 70 mg/100 g. And we know enough about cholesterol to know what that means for us.

Milk protein

Milk protein is made up of about 80% casein protein and 20% whey protein. Apart from protein in eggs (egg allergy), milk proteins are the most frequent causes of true food allergies, particularly in the case of young children.

The author incorporates a table showing the various milk proteins, including eight casein proteins, three whey proteins, four immunoglobulins (Ig), enzymes, and minor proteins. These minor proteins are only present in trace amounts, but they have a great effect.

She emphasizes that as1-casein is a strong milk allergen and that beta-casein proteins could indeed be responsible for diabetes. The a1-type beta casein is a major cause of type 1 diabetes. She writes that the whey protein beta-lactoglobulin found in dairy milk is not present in human milk and that it is the strongest milk allergen. It is also a risk factor for the development of Diabetes Type 1, as is serum albumin (p. 176).

Casomorphins—Exorphins—A1 and A2 Milk

Exorphins are protein fragments that resemble opiates and have the same effect: they make people happy and addicted, are calming, and reduce pain. The digestion process doesn't break them down into their amino acid components; instead, they enter the bloodstream as protein particles and reach the brain. These exorphins that can make you happy are found, most notably, in grains (gluten) and in milk.

The exorphins in milk form when casein proteins are digested in the intestine and they are therefore also called casomorphins and bioactive casein peptides. In mammals, they regulate our entire metabolism, our desire (see pain and pleasure), and intestinal activity (peristalsis).

Casein proteins have been connected to attention deficient disorder (ADS) in children, forms of depression in adults, and autism. Constipation may occur as the result of the calming effects that casomorphines have.

Around 1,000 years ago, Hildegard von Bingen forbid epileptics from eating goat's cheese—they didn't have dairy cheese back then. But the protein composition of goat's milk is similar to that of dairy milk.

The author explains the ongoing scientific debate about A1 and A2 milk. The A1-beta casein in milk from European, American, Australian, and New Zeeland cows can be transformed into the strongest opioid peptide beta-casomorphin-7. The A2-beta casein found in milk produced by Indian and African breeds, however, cannot be transformed.

As a result, A1 milk contains more "morphines" and is a greater contributor than A2 milk to lifestyle diseases such as autism, schizophrenia, type 1 diabetes, and cardiovascular diseases.


Depending on the feed and care the animals receive, the vitamins A, B1, B2, B12, E, and K are found in milk. Vitamin D is only present in summer milk, and vitamin C only in trace amounts. Since milk is heated as part of the production process, milk actually contains very little vitamin B complex and essentially no vitamin C.

The author is mistaken when she writes the following about vitamin B12: only those who have eaten vegan for a long time may potentially have a problem with this in the long term, and not others who are healthy. But lacto-vegetarians (vegetarianism) also have this problem in the long term as often do older people who don't get enough B12. The latter group is at risk not because they don't consume enough, but because their bodies can't metabolize enough.

The milk industry is engaging in false advertising when they claim that dairy products are a good source of vitamin B12. It contains only about 10% of the vitamin B12 that is in meat and an even smaller amount when compared to fish such as mackerel and herring. But vitamin B12 is really a topic in itself.

Mineral and Acids

Milk, fruit, vegetables, and potatoes are rich in potassium. Milk contains, e.g., 1,500 mg/kg potassium as compared to 1,200 mg/kg calcium, but no one talks about potassium. However, too much potassium can cause cardia arrhythmia.

There are many reasons why milk fails in its role as a calcium supplier for the bones—in spite of the relatively high amount of calcium it contains. About two-thirds of the calcium is firmly bound within the casein micelles and is not available for the body to use. The body can only absorb a small amount of the rest because magnesium is required for the absorption process. With only 100 mg/kg, milk doesn't contain very much magnesium.

Magnesium, along with vitamin B6 (pyridoxine), dissolves calcium phosphate. In contrast, phosphorus in the amount of 900 mg/kg forms an optimal calcium-phosphate balance. However, if foods are rich in phosphate such as colas, hard cheese, spreadable cheese, and “Kochkäse” (Cancoillotte), this disrupts the C-P balance considerably, and the body cannot absorb the calcium.

The advertising connected to zinc (3.6–4 mg/kg) is also misleading because you would have to drink 5 liters of milk daily in order to get as much zinc as you need. In addition, zinc and calcium work antagonistically and inhibit zinc resorption. Advertising with claims about iron are also deceiving as milk contains only very small amounts of iron.

Since animal feed has been iodized since the late 1990s—which has had serious consequences for the animals—and the food industry almost exclusively uses iodized salt, experts warn about the risks of consuming too much iodine. In 2006, the EU did reduce the maximum permissible level of iodine in compound feed for dairy cows from 10 mg/kg to 5 mg/kg.

But this limit is more than ten times the amount that the animals need, which causes permanent stress. However, since the animals are butchered at such a young age, the animal diseases don't become apparent, and in any case, the public doesn't become aware of this problem.

The fact that milk contains a very large amount of citric acid (E330) with 2,450 mg/kg is virtually unknown. This is almost twice as much as the calcium it contains. This can cause adverse food reactions in young children, which is something that scientists are still trying to figure out because young children don't yet consume any lemonade or convenience foods containing additive E330. A large amount of citric acid increases the transport of aluminum to the brain.

Benzoic acid, which can kill both bacteria and fungus, is used by the food industry as a preservative (E numbers 210 to 213). It is considered to be an allergen. Benzoic acid is not used in dog and cat food since even small amounts could be fatal for these animals. But too much benzoic acid can also be detrimental for humans. It occurs naturally in milk and in larger concentrations in fermented products, such as yogurt and quark.

If fruit containing benzoates such as blueberries, currants, cranberries, or plums—or nuts—is added, then the product can contain very high levels of benzoic acid. Two cups (500 g) of fruit yogurt can contain up to 150 mg of benzoic acid. That is six times more than the maximum amount recommended in 1970, and the milk ingredients alone almost reach this recommended value.

It is interesting to note that benzoic acid is not produced when the calves drink the milk directly from the utters. Instead, this happens only after oxidation occurs in the air; benzoic acid is produced from hippuric acid. Lactic acid bacteria are also involved in this process.

Methionine, an essential amino acid containing sulfur, is found primarily in milk and other animal products. Methionine changes the taste of milk in an unappetizing manner when milk is exposed to light (lightstruck flavor of milk). This oxidized flavor can be prevented by using packaging that doesn't let the light through. Our bodies use methionine to form homocysteine (HCY) in unphysiologically high concentrations—and this promotes arteriosclerosis.

Since the consumption of dairy products has quadrupled over the last 40 years, this is often linked to diet-related hyperhomocysteinaemia. It is known that people who have Alzheimer's disease show significantly elevated homocysteine levels. A comprehensive table shows that fruits and vegetables have by far the lowest levels of methionine. For example, if you take the same amount of fruit and Gruyère cheese, the fruit contains just 1% of the amount of methionine that the cheese contains. Next, the author compares two different types of diets.

Conjugated linoleic acids (CLAs) are found primarily in the dairy products and meat that come from ruminant animals. An anticarcinogenic effect of these was found only in animal studies with mice and rats and in cell cultures. The dairy industry immediately emphasized this as being a positive aspect of milk.

CLA is also found in high concentrations in nuts, sunflower seeds, thistles, and soybeans. In addition, it is found in lower concentrations in a variety of foods, a point which the dairy industry neglects to mention.

The milk from cows kept in stalls—the most common case—has only a third of the nutrition of the milk from cows who are pasture-raised. The effect of reduced body fat varies widely depending on the species. “No significant human studies have been conducted.” And the studies have not been verified. Pure CLA has been analyzed, but the effect that it has together with the other components of milk has not been investigated, and this could cancel out any positive effects.


Milk contains numerous hormones and elements that resemble hormones. The effects that these bioactive substances have on people have not, for the most part, been investigated (biophysics). Milk contains many "growthhormones" ("somatrop..") and also sex hormones. The sex hormones effect the hypothalamus, the gastrointestinal tract, the stomach and intestinal region, the thyroid, and the parathyroid glands.

The author also discusses the situation in the United States, where genetically engineered "growthhormones" are permitted (see The World According to Monsanto).

Recombinant "BovineSomatoTropin" (rBST) from Monsanto has been authorized in the United States as the product Posilac since 1994. It is interesting to note that rBST was produced exclusively in Austria until 2006 (p. 199). The entire production was exported to the United States. However, after an FDA inspection revealed quality issues in 2003, parallel production was then started in the United States in 2006 (p. 209).

We should know that BST and also rBST in milk and dairy products elevate the IGF-1 levels in the blood. The IGF-1 (Insulinlike GrowthHormone") that is produced in the cow's body as a result of BST and rBST is identical to the IGF-1 in the human body. Other mammals almost always have different forms of IGF-1. The IGF-1 that humans consume via milk and dairy products is a key substance that promotes the "growing" and spread of tumors when it is circulating in the blood.

The IGF-1 in our bodies is bound in cells and can in this way carry out its designated tasks. We have small amounts of IGF-1 in our blood during our "growthphase", but this decreases as we get older. When IGF-1 freely circulates in the blood, it, in particular, increases our risk of breast and prostate tumors. However, research on this subject has not been concluded.

Maria Rollinger includes a statement from the “Report on Animal Welfare Aspects of the Use of Bovine Somatotrophin” prepared by the EU in 1999 (p. 28) in her book: Because of its anti-apoptotic effects, IGF1 could promote cell proliferation in cows to a stage of tumour neogenesis (p. 191).

Using just a little bit of logical reasoning, it must be clear what this means for us. Cows are only allowed to live a few years for many reasons, one of which is to prevent this outcome. Just compare milk consumption before World War II with that of today—and this with the statistics for breast and prostate cancer.

Milk contains more "growthhormones" in the United States than in the EU. This leads to a greater proportion of IGF-1 in the body. As I spoke in depth about this in the Book Review: Milk—The Deadly Poison, I will leave it at that. Please see also the Book Review: No Milk.

Book cover of "Milk, the deadly poison" by R. Cohen and book cover of "NO Milk" by D.A. Twogood.© CC-by 2.0, Foto Ernst Erb, Foundation Diet and Health Switzerland

Prof. Dr. med. Bodo C. Melnik writes: Breast milk is not only nourishment. It regulates a central cellular switch: the enzyme complex mTORC1 (mechanistic target of rapamycin complex 1). Formula, in contrast, leads to excessive mTORC1 activity and therefore programs the body to be later susceptible to obesity, diabetes, high blood pressure, allergies, and possibly also cancer” (Article: Signalsystem der Evolution [Evolutionʼs signal system].


Tag Cloud
 milk   dairy   cheese   lactose   food   protein   production   acid   industry   whey   consumption   cows   calcium   proteins   butter   diseases   diet   disease   fat   yogurt   foods   casein   animals   galactose   meat   breast   countries   bacteria   cancer   process