"

Cloned animals can be bred to produce the highest yield possible. However, the research over the last 30 years has not yet achieved this efficiency. That is why there were only about 3'000 cloned cows in 2004. The number increased to about 4'000 by 2010.

Cloned animals

Meat and milk from cloned animals are officially banned in Europe, but British regulatory agencies issued a warning about cloned meat and milk in 2010. Cloned meat and milk are legal in the United States, and according to this report by the BBC News, at least 100 cattle that were the offspring of a cloned cow in the US entered the UK food chain.

The milk produced by turbo cows, who are cloned via nuclear transfer (genetic copy), has a different composition. In particular, the level of bovine serum albumin (BSA) is 50% higher. For 20 years now, BSA has been linked to the development of Diabetes Mellitus Type 1.

2.9. Milk, the GM groth hormone rBST, and IGF-1, p. 193

The author shows how Monsanto and its licensed companies have been regularly submitting authorization requests around the globe for the genetically engineered "growthhormone" rBST. In 2004, the EU published regulations on genetically modified organisms (GMOs) for Europe and on issues regarding hormone treatment given to animals for slaughter. Now it is up to consumers to decide whether or not they want GMOs.

GMOs

The next 17 pages are spent describing Robert Cohen's futile court battle in the United States that had the aim of exposing how Monsanto lied and cheated in order to achieve the authorization of rBST. It is an amazing story and one which may have helped to prevent the introduction of GMOs in Canada and Europe so far.

There is no doubt that Monsanto also discovered the transcription error which happened accidentally, but yet Monsanto claimed that BST with its 191 amino acids was completely identical to the genetically engineered rBST.

The product Prosilac is twice as strong. Either the cows are given two injections a week to increase their daily milk output, or rBST can be used at the end of the lactation period in order to extend this up to 100 days. Normally, the turbo cows are then butchered.

The author also explains the effects that IFG-1 has on our bodies. We learn, for example, that IGF-1 controls the onset of puberty in girls and stimulates cell division in the breast tissue. For the present, we can be sure that ICF-1 plays a decisive role in the development of breast and prostate tumors (p. 203).

IGF-1

A women's body only forms about half of a tablespoon of estrogen in her entire life. IFG-1 is effective at one nanogram per milliliter. Milk contains about thirty nanograms of IGF-1 per milliliter. And cheese contains IGF-1 in even more significant concentrations. But Posilac is still a multimillion dollar business.

Rollinger recommends a book by the British geochemist Jane Plant titled Your Life in Your Hands. In her book, Jane Plant describes the problem clearly and effectively, and she also describes how she defeated breast cancer by following a diet free of milk, dairy products, and red meat.

In particular, she points out that orally ingested IGF-1 reaches the receptors in the intestinal mucosa bioactively, passing through the stomach without being destroyed. The IGF-1 is then present in the plasma (blood plasma), which requires a special transport mechanism through the mucous membrane (tunica mucosa).

In addition, casein increases the bioavailability of IGF-1 considerably. This is necessary for mammals of the same kind so that the substances work as desired.

The curdling of milk protein in the stomach was commonly used in medicine in the Middle Ages, but today it is a forgotten technique. IGF-1 effects our immune system in several ways. It is only found in meat and milk and not in plant-based foods. Cooking and frying at high temperatures destroys the large majority of IGF-1. The gastrointestinal tract is also affected by IGF-1.

The Report on Public Health Aspects of the Use of Bovine Somatotrophin speaks about cell culture studies in section 2.4.1.2. These show that IGF-1 increases cell proliferation in various cell lines of carcinomas of the large intestine (colorectal cancer), helping the cancer to spread more quickly.

Today, we have identified around 60 hormones called semiochemicals in our bodies which are responsible for carrying information. One billionth of a gram can bring about significant biological effects.

2.10. Pasteurization, paratuberculosis, cold pasteurization, cooling and their effects, p. 211

Until 2006, it was required that milk sold in the EU be heat-treated (pasteurized) so that harmful bacteria would be killed. The situation is the same today because pasteurization has certain technological advantages even though several undesirable microbes remain, for example butyric acid bacteria.

The author explains how milk experts believe that, pasteurization negatively influences the proteins, fats, carbohydrates, vitamins, and enzymes in milk, and that this can't be avoided.

There are indications that pasteurized milk is more likely to cause allergies than raw milk or UHT milk. This is because certain proteins react more aggressively as a result of pasteurization. At 80°C (176°F) or higher, complex casein-lactose connections are made, which due to the melanoidins that form is known as the Maillard reaction. Roasted chicken, microwave dishes, and French fries have a golden-brown color as a result of the injection of the lactose-casein substrate. The industry uses this capability to its advantage.

Pasteurization, paratuberculosis and Chron disease

There are different types of pasteurization. Vat pasteurization is when the milk is heated at 62–65°C (143.6–149°F) for 30 to 32 minutes. High Temperature, Short Time (HTST) pasteurization entails heating the milk at 72–75°C (161.6–167°F) for 15 to 30 seconds. And high temperature pasteurization is performed at 85°C (185°F) for at least 4 seconds. The upper limit for temperature is 127°C (260.6°F). Untreated raw milk must meet very strict requirements.

After pasteurization, the whey proteins are present only in their denatured state. And at temperatures of 65°C (149°F) or higher, the casein micelle structure is destabilized. And at 75°C (167°F) or higher, the sulfur-containing amino acids methionine and cysteine oxidize to become disulfides, which gives milk a “cooked” taste.

The author also discusses fats and enzymes, and how lipase is completely destroyed at 85°C (185°F) and partially destroyed at 74°C (165.2°F). Only in this way can homogenized milk be produced. It is required by law that cream be heated to 85°C (185°F) as this significantly improves the taste of butter. Xanthine oxidase, an enzyme in the milk fat globule membrane, is also inactivated at 85°C (185°F).

More vitamins are lost in UHT and sterilization than in pasteurization, which is why the industry adds artificial vitamins. (According to Wikipedia, UHT (ultrahigh temperature processing or ultra-heat treatment must be at a temperature of at least 135°C (275°F) for one to two seconds.)

Mycobacterium avium ssp. paratuberculosis (MAP) is a heat-resistant pathogen which causes Johne's disease (paratuberculosis) in cattle. Its ideal "growthtemperature" is 37°C (98.6°F), but the mycobacterium can withstand temperatures of up to 140°C (284°F). Since signs of this deadly disease only become evident in cattle after their second or third lactation period, the pathogen is very difficult to detect.

The author quotes a passage from an article by Paul Klee (2001) on the Ludwig-Maximillians-Universität München website:

Paratuberculosis occurs in the places where people are looking for it. A lack of evidence pointing to paratuberculosis usually means that there has been a lack of relevant tests (p. 217).

The infection rate is estimated differently in every country, for example, in the Netherlands and in Denmark, it lies between 30 and 55% and in Germany between 10 and 30%. The calves usually get infected from their mothers before they are born. MAP can be found in the feces and milk of the animals—as early as in the initial stage.

Given the slow "growthrate" of MAP, it takes three months to cultivate and detect. Mycobacterium paratuberculosis has been found in humans who have Crohn's disease, but not in healthy control persons. But this has not been recognized as conclusive evidence.

In humans, the intestinal inflammation caused by Crohn's disease and the connected diarrhea are not fatal.

\"Redaction

Wikipedia: Some evidence supports the theory that Mycobacterium avium ssp. paratuberculosis (MAP), along with special variants of the CARD15/NOD2 gene, can cause inflammatory bowel disease in humans as it does paratuberculosis in animals. Cattle that have paratuberculosis and patients with Crohn's disease have an identical mutation in the CARD15/NOD2 gene, which has a similar negative impact on the production of defensins (production of natural antibiotics). MAP causes chronic intestinal inflammation in cattle and other animals and inflammatory reactions and tissue damage to sterile human intestinal samples. Mycobacterium avium paratuberculosis induces specific antibodies in humans. These antibodies are found in the blood of up to two thirds of all patients with Crohn's disease.

Tests are currently being conducted to determine if patients can be successfully treated with a combination of antibiotics. Treatment with multiple types of antibiotics has already shown initial success in the United States and Australia. MAP has been detected on several occasions in a number of dairy products. A certain percentage survives the conditions of pasteurization, a process which the majority of milk undergoes during production. (translation of the German text)

Chrohn's disease is a chronic disease that has a high recurrence rate. In most cases, complications that arise make surgical therapy necessary, but this also does not ensure a definite cure.

In the western industrial countries, the annual number of new cases of Crohn's disease lies between 7 and 8 per 100,000 people. The prevalence (number of people who have the condition) is about 150 per 100,000. The number of people with Crohn's disease has increased over the last twenty years (translation of the German text).

Methods of extending the shelf life of raw milk

The shelf life of raw milk can be extended through the process of cold pasteurization. In this category, the author lists methods such as hydrostatic high-pressure treatment, pulsating high-energy field technology, ultrasound, pulsating high-frequency light, and UV and radioactive radiation. But these processes also considerably decrease the quality of the components found in milk.

Adding anitbacterial chemical compounds that are already present in milk is another method. Chemicals such as hydrogen peroxide and thiocyanate extend the shelf life of raw milk by up to six days.

Unfortunately, cooling also has serious consequences for milk components such as casein micelles (micelle) and fat globules. They release individual components into the milk plasma. It is mainly the industrial process that changes the milk. This begins with cooling when the milk is collected and includes various steps of quick heating and quick cooling.

2.11. Homogenization, XO Factor, allergies, and intestinal damage, p. 221

Homogenization breaks the fat globules in milk into a smaller, uniform or homogenous size. To do this, the milk is forced through small holes in homogenizers under high pressure. This prevents the milkfat from rising to the top, and there is no longer any cream to skim off. Depending on the use and settings, instead of a diameter of 0.5 to 10 μm, the fat globules can range from 0.2 to 1.5 μm.

Homogenization and changes that occur with homogenized milk

Almost all fermented dairy products are made using homogenized milk, but only fresh milk has to declare that it was homogenized on the label. Homogenization guarantees a certain appearance of the milk and allows the milk to be stored longer and processed intensively.

Without explaining how or why, the industry claims that homogenization improves digestion. It has been admitted that homogenization causes people to become allergic to milk proteins, but everything else is denied. It is truly difficult to digest raw milk because casein first forms casein strands in the stomach and then later a compact coagulum (mass of coagulated matter, clot, lump, or curd). This is also the reason why milk was not earlier seen as a food that caused people to gain weight.

With raw milk, a majority of the large fat globules, along with the substances attached to them, pass undigested through the small intestine. This is because the lipases in the human digestion tract don't have the ability break them down. Bacteria in the large intestine then metabolize these substances into free fatty acids and hydroxy fatty acids. This has a laxative effect that can cause diarrhea. It is also why many people used to not drink milk. But now with homogenization, milk has been able to sneak in.

The author describes six changes that occur with homogenized milk. She explains how substances like enzymes find themselves encapsulated and are thereby able to pass through the stomach. Other substances end up in the milk plasma, which causes them to increase their biological activity. Using a table, the author then shows the main functions of the following digestive organs: the mouth, stomach, small intestine, and large intestine.

According to an old school of thought, the stomach kills all bacteria that have a pH of 1 to 1.5 and denatures the proteins so that they lose their biological capabilities. The stomach has been called the body's gatekeeper as it protects us from harmful substances.

Also according to this line of thought, hormones and enzymes in our food cannot have any negative impact on human metabolism. But why does the dairy industry advertise active or probiotic yogurts which have added bacteria that change the flora of the large intestine?

The author writes, If the body's gatekeeper worked perfectly, then we would never have gastrointestinal infections or problems, thereby effectively showing that the idea of the gatekeeper is too much of a simplification of the complicated relationships in the body.

Milk has a pH of 6.7 and changes the acidic environment of the stomach so much that the pepsins and stomach enzymes are severely impaired. At a pH of 6 or lower, they are even inactive. The encapsulated proteins, in particular, are able to reach the small intestine undamaged, where they are then again in an alkaline environment.

The industry even uses the adhesive properties of casein for micro-encapsulation as a way of protecting pharmaceutical substances from the acidic environment of the stomach. This allows them to also reach the small intestine undamaged.

The problematic "growthfactors" IGF-1 and IGF-2 are acid-stable peptides and can pass through the acidic environment of the stomach without being encased in a fat globule.

\"Redaction

Information about peptides and pepsins on Wikipedia (translation of German version):

The digestion process can convert common proteins in our food such as gluten and casein, and also the proteins in eggs and spinach into opioid peptides. These peptides affect the body in a way that is very similar to "morphines". Individuals who are not capable of further metabolization of these peptides may develop signs of physical or mental disease.

Pepsin (from the Greek word πέψις pepsis, meaning digestion) is a digestive enzyme called a peptidase that is formed in the main cells of the gastric fundus in mammals and is therefore also produced by humans. It is responsible for breaking down the proteins absorbed from the food we eat.

The thesis of the XO Factor deals with xanthine oxidase (XO or sometimes XAO), which is present in large amounts in dairy milk and as a result of homogenization can enter the intestinal tract via encapsulation. The author writes, XO is produced in the liver, and is present in larger amounts in the mucous membrane of the small intestine and also in the nerve cells; it plays an important role in the metabolism of purines. If XO is too active, this can lead to gout (p. 231).

XO factor

The author explains how XO that is freely circulating in the bloodstream oxidizes plasmalogens, changing them into a different substance. The heart muscle is particularly affected by this. In addition, the oxidized fatty aldehydes settle and cause damage to the heart and arteries. Where the plasmalogens are lacking, cholesterol builds up. The author cites the cardiologist Kurt Oster and the biochemist Donald Ross for these initial findings in 1973. In 1983, their book "The XO Factor: Homogenized Milk May Cause Your Heart Attack" was released.

Both researchers and further studies confirm that people with clinical arteriosclerotic symptoms have more antibodies working against the bovine XO in their blood than other people. The dairy industry, along with government agencies, counterattacked, but did not conduct any further investigations. The problem was simply swept under the table, and no scientific reviews of the XO thesis were carried out.

A wide range of research on homogenized milk has shown that at the very least mice and rats suffer from various intestinal problems and allergies that do not occur without the consumption of homogenized milk. Just compare the statistics on the rates of allergies and intestinal diseases over the last 30 years.

2.12. Milk - fresh, lactose-free, milk powder, and salmonella, p. 237

In this chapter, the author describes and criticizes the numerous temperature treatments that milk undergoes: It is separated, changed, and recombined at will. Raw milk and certified raw milk are processed in a type of milk refinery. She clearly describes the processes of cooling, thermization, storing, and centrifuging, which are then followed by separating and recombining and negative effects for the milk.

The production of milk for consumption includes 25 to 30 technical steps and numerous temperature treatments. But on the packaging, we still read fresh milk.

The milk plasma and cream can be processed much more effectively when they are separated, and they can then be recombined.

Milk powder and salmonella

The author informs us that the production of milk for consumption includes 25 to 30 technical steps and numerous temperature treatments. But on the packaging, we still read “fresh milk.” The author asks us how it is that we like the taste of milk that has been heated and then cooled several times. She calculates that our fresh milk is at least 4 to 5 days old by the time we can buy it.

Since 2002, there have been processes for heating the milk at a high temperature for a short time. This extends the shelf life to about three weeks, but the product is not labeled as UHT milk. The technical term for this is ESL milk, which stands for extended shelf life.

For milk powder, the process of drum drying was traditionally used, but this has now been changed over to spray drying. And now it is possible for salmonella to enter the production process from the environment, for example, the building's roof, via the cooled air. Rollinger quotes author Kielwein (pp. 108 and 184) from his book "Leitfaden der Milchkunde und Milchhygiene" (Handbook of dairy science and dairy hygiene): Since the introduction of spray drying in the production of milk powder, it is not unusual to find salmonella in processed products (p. 246).

It is, however, only possible to get sick if the milk was kept at a warmer temperature for a certain amount of time. Babies, in particular, suffer from intestinal infections and salmonella (salmonellosis).

2.13. Butter, margarine, cream, and ice cream, p. 249

In this section, the author discusses the historical significance of milk. The Greeks and Romans used quark primarily to make ointments for medical purposes and for cosmetics. They considered drinking milk to be harmful.

The historical significance of milk

In contrast, the nomadic peoples of the Northeast consumed butter, which the Greeks and Romans considered to be a barbaric practice. In Egypt and Palestine, however, butter was a favorite food and source of fat.

In Germany, butter was more widely used as an ointment than as a dietary fat until the Middle Ages. An example of this comes from Hildegard von Bingen. In the late Middle Ages, butter was heated and used as clarified butter or butterfat, because clarified butter can be stored longer. Other methods were salting the butter, storing it away from oxygen and light, and allowing the cream to culture naturally. In these ways, butterfat could be stored for years, although it surely became somewhat rancid.

The author explains how butter is produced today, including the high temperatures that are used, and she writes, Since the majority of dairy cows are in stalls year-round and receive feed that supports high milk production, butterfat consists primarily of saturated fatty acids (p. 253). And margarine is usually made from skim milk or skim milk powder, and even pure vegetable margarine may contain a milk additive.

The text introduces us to the ways that cream, cream products, and ice cream are made. Gelatin is added to ice cream, for example, in order to extend its shelf life. Multiple rounds of homogenization, heating, cooling, and fractionating the fats make ice cream stay good longer even without cooling and result in a creamy, appetizing mixture that can survive melting and refreezing.

2.14. Fermented dairy products and lactase deficiency, p. 257

The industrial production of fermented dairy products is unfortunately not the same as it used to be. As well as problematic components such as protein, lactose, and galactose, substances such as histamine, benzoic acid, and a large amount of methionine are added to fermented dairy products.

Fermented dairy products

The glucose breaks down to lactic acid. As soon as the pH has reached a certain low, this process stops. Only about 2% of the lactose remains. The galactose doesn't ferment. In contrast, yeast fermentation, like that which is used, for example, with kefir, also ferments the galactose.

Yogurt is the Turkish word for soured milk, but they use somewhat different types of bacteria in comparison. There are a variety of yogurts including set yogurts, creamy stirred yogurts, and also yogurt drinks (yogurt); the production processes for these vary slightly.

The first bacterium discovered by Ilja Iljitsch Metschnikow (Metschinkoff, 1845–1916) is named Lactobacillus bulgaricus, a bacterium he isolated from milk. Today, this bacterium is used along with Streptococcus thermophilus, Lactobacillus salivarius, and the very well-marketed Lactobacillenspezies acidophilus and bifidus.

Companies started producing yogurts on the industrial scale in the 1930s, but it wasn't until the 1970s that industrial mass production with assembly lines began (Gesetz der Massenproduktion (law of mass production) by Karl Bücher).

The basic procedure is to store the milk, clean and centrifuge it, set the desired fat content, kill the natural bacteria via heat treatment, and add specific bacteria. Since today's milk shows traces of antibiotics, bacteria have been bred that react less to these. The goal is to remove all inhibitors.

A further step is to increase the fat-free dry substance of the milk to a certain value by either adding milk powder, whey powder, or milk protein. The alternative is evaporation. In this step, more whey fluid is incorporated into instead of separating it from the set mixture and the result is a higher yield of yogurt.

High-pressure homogenization is then performed so that fat doesn't separate from the yogurt. And here a quick process only has a fermentation time of two to four hours. Stirred yogurts and yogurt drinks are cheap varieties because they can be incubated in large fermentation tanks at 40–45°C (104–113°F) for two hours. Afterwards, flavors are added.

The author then explains the tricks used to increase water binding, including heat treatment at 95–98°C (203–208.4°F) for five minutes so that the protein breaks down and all of the whey can be incorporated. Stirred yogurt also contains thickening agents and yogurt drinks contain stabilizers. Many set yogurts have animal-based gelatin or modified starches in their list of ingredients. The author asks the reader, “Where is the real, natural yogurt?”

Mild yogurt is made by using bacteria that were previously advertised as being especially healthy for the gut flora as they form L-(+)-lactic acid; these are called bifidus and acidophilus bacteria. In this way, the shelf life is extended to at least four weeks, and the yogurt tastes very fresh during this time period.

The population in Eastern Europe, which is primarily lactose intolerant, developed, along with kefir, its fermented dairy production that included a combination of lactic acid and yeast fermentation. This doesn't leave any lactose or galactose remaining, but it does leave a little alcohol.

Since traditional kefir would burst the packaging as a result of the intense fermentation process, the kefir sold in stores today has nothing in common with the traditional version except for its name. This new kefir contains lactose, even when it is mild kefir! And most disturbing is that pasteurization kills the “microlife.”

As a result of a combination of lactic acid and yeast fermentation, traditional kefir contains neither lactic acid nor galactose. There are therefore major differences between traditional fermented dairy products and those produced by the modern dairy industry—but it still advertises its products as having the benefits that traditional fermented dairy products had.

Kefir has its origin in the Balkans and the Caucasus and is made from goat, sheep, or dairy milk. Similar products include kumis made from mare's milk (Russia), milk kvass (kvass) made from whey with yeast (Commonwealth of Independent States), villi (Finland), leben (Middle East and North Africa), and doogh (Iran). These products are made traditionally using a combination of lactic acid and yeast fermentation.

This answers the question of why lactose-intolerant individuals tolerate these type of dairy products that are made traditionally. There are several other types of traditional fermented products that ferment for days, automatically causing the yeast to work and traditional fermentation to take place. In this way, yogurt that is truly produced in a traditional manner contains very little lactose.

The author takes several pages to explain digestion processes and various kinds of fermented dairy products, comparing the production methods used traditionally and today.

Lactose content of yogurts

In this context, she refers to Andrea Winchenbach's dissertation titled "Prüfung der Essentialität lebender Keime für die Förderung der intestinalen Laktosehydrolyse durch die mikrobielle ss-Galactosidase fermentierter Milchprodukte am Model des gnotobiotischen Göttinger Minischweins" (Testing the essentiality of living microbes for the promotion of intestinal lactose hydrolysis by the microbial beta-galactosidase of fermented dairy products based on the model of the gnotobiotic Göttingen miniature pigs).

The yogurt you can buy at the grocery store contains approximately 3.5 to 5.5 percent lactose, which is usually only labeled as carbohydrates. Even in an organic grocery store, it is almost impossible to find an organic yogurt that doesn't contain added milk powder and isn't pasteurized or homogenized. A 500 g container (about 2 cups) of yogurt has about 41.5 g of lactose.

The provocation test used by medical practitioners to determine lactose intolerance contains 50 g lactose. A provocation test is not beneficial to a patient's health, but it is necessary for clarification purposes. Yogurt causes lactose-intolerant individuals to experience physiological stress.

Maria Rollinger shows why probiotic yogurts are not the answer as they contain an extremely high level of lactose. She is amazed that such misleading advertising for a particularly easy to digest yogurt is allowed. Prebiotic foods (= prebiotic, not probiotic; see also synbiotics) contain fructooligosaccarides and inulins which cause food to ferment in the large intestine.

The Ernährungsbericht 2000 (nutrition report released by the Deutsche Gesellschaft für Ernährung, e. V. (German association for nutrition)) concludes that according to the current state of research, the human gut flora is not influenced by pro- and prebiotic foods and that these can even have an adverse effect on people with a weaker immune system.”

She shows how companies use false claims to advertise their products, for example, the way Danone advertises Actimel, and then demands double the price for these—under the title “Audacity increases". Simply compare the list of ingredients. The company Honsha has set another record with the advertising their product Yakult.

How companies use false claims to advertise their products

This drink consists primarily of water and skim milk powder stirred together with glucose syrup, sugar, flavoring, and Lactobacillus casei Shirota. And it costs twice as much as Actimel. And this is the case despite the fact that the drink is produced using mainly a waste product (skim milk powder).

The fairytale about the supposedly good L-(+)-lactic acid and bad D-(−)-lactic acid (optical activity) finally stopped being used for advertising at the end of the 1990s since the body can produce L-(+)-lactic acid on its own as needed. When lactic acid forms in the intestines, no matter if it is the (L)- or (D)-lactic acid, this causes an undesirable acidification of the environment.

In addition, Histamine is formed during every type of fermentation that includes microbial fermenting (Allergo, 1996, No. 6, pp. 346–351, Medizin Verlag GmbH). As a result, lactose-intolerant individuals who consume dairy products are overloaded with histamine.

Specially fermented dairy products such as yogurt and quark significantly increase the amount of methionine and benzoic acid in our diet. The author explains the problems that these two substances cause in chapter 8 (p. 273).

2.15. Quark, milk proteins, and new processing methods, p. 275

Quark, particularly quark made with skim milk, is a great way for manufacturers to use the huge amount of excess skim milk that results from the production of dairy products and turn it into good money. Quark is actually soured milk from which the watery solution, the whey, has been removed.

Quark

Today, lactic acid and rennet enzyme precipitates are stirred in and sometimes coagulation stimulants are also added. In the 1960s and 70s, the draining method was replaced by the quark separator.

The industry now aims for a much higher dry weight by adding milk plasma or skim milk and whey using quark separators and ultrafiltration followed by standardizing the fat content by adding cream. This results in a creamy mixture that sells well and has a long shelf life and the same taste.

Today, quark is really only a product similar to quark with an artificially increased proportion of whey proteins and lactose. With traditional quark, the majority of the whey proteins and lactose were drained off when it was being made.

Quark now consists primarily of casein proteins, whey protein, lactose, and (approx. 82%) water. The author explains the entire production process, including ultrafiltration (UF technology), and the complete denaturation of proteins and their connections with casein that result from heating at 95°C (203°F) for 5 minutes. However, quark is considered a healthy food. But it is actually something that today makes many people sick (p. 278).

The author also explains how shelf life is extended by using preservatives and she lists the substances that are added: sorbic acid and its salts, for example, potassium sorbate, benzoic acid and its derivative sodium benzoate, esters of parahydroxybenzoic acid (parabens), and formic acid and its salts, for example, sodium and potassium formiate.

Food preservation

She also describes thermization as an alternative means of food preservation. In milk refineries, which are state-of-the-art facilities, membrane filtration (membrane technology) is used to separate all of the ingredients of milk.

We also learn that in ancient times, the Romans mixed milk proteins into mortar, which then became rock-hard, harder than our cement and that today casein proteins are mixed into products such as tile cement. The author talks about the synthetic plastic galalith (“milk stone”) and the casein proteins in the glue used for various industries.

But sodium caseinate is also used in food production (e.g., nondairy creamer) as is milk coprecipitate consisting of casein and whey protein (See the book Trocknungstechnik in der Lebensmittelindustrie (Drying technology in the food industry), p. 462 by Dr. Dietrich Gehrmann et al.).

The author cites the examples of frozen pizza, where the melted cheese is often replaced by cheaper casein; foam and foaming agents in whipping cream, puddings, and creams; and emulsifiers and stabilizers in soups, dressings, meat products, pastes, and pastries.

The pharmaceutical industry uses this substance to encapsulate and then transport substances, and casein products are used on fruit and vegetable plantations as a spray to preserve the fruits and vegetables and protect them from pests (p. 281).

The author also describes how milk protein and casein used to be put into the same category, but then in the 1930s, it was discovered that casein and whey proteins are two very different milk protein fractions. She explains how confusing it can be reading the labels on products as there are often entirely different terms for the same thing.

Dairy products in Germany may contain up to 15% lactose, and in other countries significantly more. Either way, calcium salts are permitted. However, milk has been classified as an allergenic substance since November 2005 and therefore has to follow special regulations. Milk is right at the top of the list of major allergens.

Products containing milk ingredients have to be labeled as such, with foods sold at bakeries and butchers being the only exception. When milk components are added to dairy products, this does not have to be labeled either.

2.16. Cheese and intolerances, p. 283

Cheese is actually concentrated quark. Depending on the extent of denaturization, cheese can be classified as acid cheese or rennet cheese. However, acid cheese is only sold to a niche market today. It used to be a way to use up the ingredients left over from butter making.

Methods used to coagulate milk

Maria Rollinger explains the various enzymes used to coagulate milk, starting with rennet, which comes from the stomachs of young mammals, all the way to plant-based coagulants. She also describes how natural rennet became a scarce commodity in the 1980s. As a result, rennet substitutes made with mold, yeast, and bacteria were developed.

These change the way the cheese tastes. Rennet interacts, in particular, with chymosin and also with pepsin; today, chymosin is genetically engineered by taking the rennet-producing genes from the calf's stomach and inserting these into a bacteria culture. No special labeling indicating the source of this rennet or the method of production is required.

The author spends several pages explaining how rennet cheese is produced by means of continuous production. The standard fat content is obtained by adding cream or milk plasma.

How rennet cheese is produced

In both fully and semi-automated production, the standard protein level of the dry matter is achieved through ultrafiltration and/or the addition of milk powder, casein powder, or milk or whey protein concentrate. Or some of the whey proteins that were filtered out of the whey on the previous day are added to the milk used for cheese-making.

She also explains that even the milk used for cheese-making is frequently homogenized.

Nitrates are used to stabilize an imbalance of salt in the milk and to prevent what is called late bloating in cheese, which results from calcium chloride, calcium phosphate, and citrate. Coloring is added to hard and semi-hard cheese. Lithol Rubine BK (E180) is only permitted in the cheese rind as it is classified as a considerable health risk.

The author then talks about the cheese ripening process used today. About ten to eleven liters of milk are needed for about one kilogram of hard or semi-hard cheese. While specialty cheese is often ripened for many years, soft cheese is ripened for 30 days, semi-hard cheese for three to four months, and hard cheese up to six months.

Problems with cheese

As it is too time-consuming to wash the cheese wheels in salt water each week for the purpose of preventing mold, either the cheese is vacuum-packed in plastic and/or the rind is treated with antifungal antibiotics. In the case of vacuum-packed cheese, square blocks of cheese that take up less space are also often put into ripening boxes.

Today, Emmental cheese is often made with pasteurized milk. Raw milk cheeses like Emmental may not be heated above 57°C (134.6°F). But denaturation takes place at temperatures much lower than this.

According to the most recent European legislation, cheese may be sold as Emmental after only six weeks of ripening in plastic and without a rind. But regulations on cheese actually stipulate longer minimum ripening times. Instead ripening accelerators and flavor enhancers in the form of amino acids are added because without these this cheese wouldn't taste good to anyone (p. 290).

Before the author talks about problems with cheese, she speaks about spreadable cheese, which has been made since the beginning of the twentieth century. Rennet cheese that wasn't able to be put on the market because it didn't meet standards may be used in the production of spreadable cheese.

According to Edgar Spreer, Technologie der Milchverarbeitung (Technology of milk processing), Behr's Verlag (p. 390, 7th edition, 1995), spreadable cheese has the longest list of ingredients. Along with emulsifying salts (citrate, phosphate, and lactate) and acids (wine and citric acid), butter, clarified butter, cream, lactose, whey paste, whey cream, whey powder, whey protein, stabilizers, coloring, and visible components such as spices are added.

Maria Rollinger writes the following about the spreadable cheese today that is becoming increasingly popular and is very cheap and is available in both softer and firmer varieties, but that is processed in factories at very high temperatures of up to 110°C (230°F).

Parents should be advised to wait as long as possible before allowing their children to try this product, even if or precisely because the advertisements for spreadable cheese are trying to achieve exactly the opposite. Because for children who consume these ingredients regularly, it would be surprising if they didn't get allergies (p. 292).

The author discusses lactose, proteins, lactic acids, galactose, and histamine, which are all in cheese. Roughly calculating, she divides cheese into thirds: protein, fat, and water. Although physicians and dieticians are of the opinion that lactose-tolerant individuals can tolerate cheese, she believes the opposite to be true: Lactose-intolerant individuals usually have a very strong reaction to cheese.

People with lactose intolerance

In the past, people with lactose intolerance may have been able to tolerate cheese, but today it is different as the dry weight is increased during the production process to meet protein standards and/or by the addition of milk powder, and, in particular, lactose. In addition, the lactic acid bacteria is only able to break down a small amount of lactose due to the significantly shorter ripening process.

When cheese is allowed to ripen for a longer period of time, it contains less lactose. But even parmesan contains some lactose. Given the cheese production that exists today, we have to expect whey proteins, casein, and lactose. Dairy milk protein allergies are bound to develop. Cheese contains galactose and usually a lot of lactic acid, 500 to 800 g in 100 g cheese. Hard cheese, in particular, contains a lot of methionine, an amino acid that can be unhealthy when we consume too much of it, writes the author cautiously.

And the longer that cheese is stored in the grocery store or in the refrigerator at home, the closer that it gets to the edge of putrefaction, something that connoisseurs of soft cheese love. And in the process, more and more biogenic amines, primarily histamine and tyramine and in smaller amounts also cadaverine and putrescine. Biogenic amines form as the final stage of protein breakdown.

Cadaverine and biogenic amines

\"Redaction

Cadaverine and pentamethylendiamine are common names for pentane-1.5-diamine, a diamine that is formed when the amino acid lysine breaks down protein microbiologically through the process of decarboxylation. It is a ptomaine isolated from decaying corpses (also called cadaveric poison). However, cadaveric poison consists of a number of other substances and is not the cause of well-poisoning, something that used to be feared. The problem is a result of bacterial toxins (e.g., the proteins "botulinumtoxin" and tetanus toxin) or an infection.

Wikipedia on tyramine (translation of German version): “Tyramine forms when proteins are broken down and is often found in foods which are fermented during the production process, for example, many types of cheese, wine, and chocolate. It is also found in bananas and viscum, and in the berries of the latter even in toxic levels.”

The author explains how biogenic amines affect the body and the problems that can occur if the intestines are attacked or there is a lack of degradation enzymes. Then even the smallest amount of biogenic amines can cause serious ailments, as histamine is present in large amounts in the small intestine when it is damaged. These types of direct allergic immune reactions can cause migraines, and stomach, intestinal, and circulatory problems, or even lead to anaphylactic shock.

She bemoans the fact that there is very little recognition of the connection between gastrointestinal and allergic reactions even though the cheese effect is indeed well known. Many lactose-intolerant individuals who consume dairy products develop a chronic histamine intolerance. She also describes the trials by bread and cheese (trial by ordeal) in the Middle Ages.

2.17. Whey and lactose - undesired waste, p. 297

Whey, formerly called cheese water in Europe, is actually a waste product of the cheese-making process and of the production of quark (although less so) and contains up to 94% water; the rest is lactose (4.5%), whey protein (1%), and some residual fat and casein. The author estimates that today this waste product, which used to be undesirable, amounts to 150 million tons annually. If whey were allowed to enter the wastewater, it would be toxic for fish and microorganisms.

Whey and new products

Within only a few hours, whey changes into a broth that neither people nor animals would enjoy. In 2005, 2.3 million tons of whey powder were produced. The powder stays good for a very long period of time as it has been heated to ultrahigh temperatures and concentrated to a powder. Cheese production has increased dramatically in the last few years in milk-drinking countries, with Europe being responsible for more than half of the whey waste.

The industry, with the support of research, has been successful in developing new products. The production of whey drinks and other products containing whey brought the industry a step closer to its goal of selling the unpopular whey as products. Numerous additives are used to improve the taste of these drinks or they are fermented to make alcoholic beverages, and then marketed to sell. Bioethanol and biogas made from whey are other possibilities.

Even more problematic are the hidden additions of milk components added to other types of foods. Several years ago, this method accounted for about 50% of the sales of skim milk powder. Just as in the United States, Europe aimed to sell 70% or more for this purpose in 2010. Today, this amount has certainly been achieved or exceeded. Thanks to the ultrafiltration of whey proteins, the dry matter of cheese and quark can be increased.

The proteins and lactose are also separated out and added to dairy products and other types of food. Adding particulate whey protein gives low-fat products a full, creamy, and rich texture (mouthfeel). But now this is also being added to normal dairy products such as semi-hard, soft, and spreadable cheese, cream cheese, yogurt, buttermilk, ice cream, and dessert products (p. 299).

\"Redaction

There are even products out there like “Bleib gesund Molke-Riegel” (whey breakfast bar made by the company Bleib Gesund), which contains 24% sweet whey powder, 7.4 % whey protein concentrate, glucose syrup, and other ingredients—and naturally other types of similar sweeteners. For critics, the name "Bleib gesund Molke-Riegel" must come across as really ironic.

Maria Rollinger then moves on to the issue of the supposedly healthy whey drinks (Molkentrinkkuren) that are touted in health food stores and the healthfood sections of grocery stores. Even the Romans had to deal with the problem of whey. After feasts, they followed doctors' recommendations and did bowel cleansings by drinking fresh whey, which worked as a laxative.

Today, whey products are big business as whey powder can be sold for between 13 and 16 euros, but it only costs 50 cents to produce. And fresh whey from naturally fed cows is seen to be comparable to the highly processed waste product of the modern dairy industry. Reconvalescence treatments used to take place near dairies, and this is how many health resorts came into being.

And now the industry is promoting whey and whey powder drinks in all flavors as a health drink and lifestyle product in gyms and other healthy spots and in cheap grocery stores. But actually it is simply a laxative—because its lactose content is too high.

Adding lactose has more complications. As a result, the EU started a research project in 1999 aimed at increasing the value of lactose. The justification was the following: The most significant barrier to marketing lactose is lactose intolerance which both consumers in and outside of the EU have (EC FAIR2-CT96-1048, EC project). The Fair Flow Europe (FFE) project has since been concluded.

Increasing the value of lactose.

In 2000, Günter Brack wrote an article titled "Milchzucker für Backwaren - ein Beitrag zum Abbau von Agrarüberschüssen" (Lactose for baked goods—contributing to the reduction of agricultural surplus) that appeared on the BAGKF website, a former federal agency now called Bundesanstalt für Ernährung und Lebensmittel (federal agency for food and diet):

People set out to convince the bakeries of the benefits of lactose, for example, its low cost, so that they would add more of it to their yeast-risen pastries. This would increase their dough production and be financially advantageous, and fortunately, they would not be required to declare lactose as an additive (p. 300).

It is a well-established fact that lactose-intolerant individuals suffer when they eat these kinds of products, but this is simply ignored. In cases of doubt, bakery chains must now admit that not a single one of their products is truly lactose free ... But who would connect their digestion problems to the delicious bread that they believe contains only flour, salt, and water?

The bottom line: people are going through life with an increasing number of disease symptoms and simply aren't able to identify the cause. Inflammations of the digestive organs, intestinal problems, multiple allergies, and skin diseases are only the most obvious results of the additional lactose and milk protein in our food (p. 304).

2.18. What stops us?, p. 305

The author spends 13 pages summarizing the following topics: taste, wrongdoings, myths, lifting the taboo, repressing the times of BSE, ideology, and special interests. Milk? Better not!

The dairy industry's path to success

Dairy products today are produced by the industry to have the best possible consistency and taste. The dairy industry's path to success began shortly after World War II. We now consume around 30 to 50 percent of our daily caloric intake in the form of milk, which has never before been the case.

Characteristic of today: instead of using our discerning taste to occasionally enjoy true delicacies, today we want, can, and have to—thanks to manipulated products—snack daily on pasteurized, homogenized, sweetened, gelatin-stabilized skim products that are made to taste mild, creamy, and delicate.

We get children used to their happiness at an early age by giving them cocoa, strawberries, vanilla, and similar things. We make them toast with chocolate spread or spreadable cheese, both of which are rich in phosphates and have additives such as milk powder. And the cornflakes and cereal they have are also with milk.

The author lists the temptations that adults face such as fresh bread (with a lot of gluten) with garlic butter or pizza with cheese, crème-fraîche in sauces, Brie, Camembert, aged Gouda, Parmesan to round off the meal, followed by ice cream or even whipped cream. The chocolate we grant ourselves as a reward contains milk powder. For a light snack, we turn to herb quark and whole grain bread, yogurt, acid cheese, Harzer cheese, or Handkäse, and we put yogurt dressing on our salad.

Wrongdoings, myths, taboos

Maria Rollinger sees the following as major wrongdoings: taking the milk away from the cows, holding cows captive in poor conditions, and expecting them to have maximum production up until their much-too-early death. Dairy products are much more harmful than meat as they are protein and fat bombs and at the same time hormone cocktails. Readers will recognize this if they have understood the content of the book.

Milk is actually meant to be drunk at body temperature, directly from the udder, or in the case of infants, directly from the mother's breast.

The root of this complex problem lies deep and can't be explained solely by interest-driven politics of powerful economic lobbies, along with the associated academic circles (p. 307).

In the section titled “Der Mythos" (The myth), the author describes how our age-old ideas of motherly nourishment still play a role and how the historical position of cows and milk are exploited and people immediately think of the Old Testament with the land where milk (for butter) and honey, actually manna, flow.

When talking about taboos, she explains the reasons for witch-hunts, the revulsion to fresh milk as a bodily fluid coming from another species, today's alienation from the origin of milk through intensive industrial processing, and our suppression of BSE by separating the animal and the product in our minds, which is not so much the case with meat.

She shows how lacto-ovo vegetarians (vegetarianism) often consume even more animal protein than omnivores (“all-eater”) and therefore don't obtain any significant health advantages.

In the section on ideology and special interests, the author shows how half-truths about milk, fat, protein, and cholesterol are maintained and how the few critical voices out there receive almost no attention from the media.

As well as the concentrated market power of the food, pharmaceutical, and diet and fitness industries, a lack of critical journalism frequently contributes to this situation. There are a variety of reasons why it's not surprising that readers often tune out and dismiss new nutrition suggestions with a shrug of the shoulder. As a result of contradictions, many people tend to throw any theory on the subject overboard and live according to their own tastes (p. 313).

The author briefly discusses flavor enhancers such as glutamate flavoring (actually glutamic acid, E620–E625) and admits that we are subject to constant taste and sensory seduction.

The image we have of clean white dairy products being traditional, pristine, natural, and healthy is an illusion. It is always an end product from a milk factory, cooled, stacked in tanks, stirred, separated, centrifuged, directed over plate heat exchangers, pushed through hundreds of meters of piping, valves, pumps, and homogenizers, separated into fractions, and combined again.

Nowhere else have the principles of the assembly line had such a strong effect on our food (except for perhaps in the case of soy).

Milk, politics and propaganda

She then moves on to “Milch, Politik und Propoganda” (Milk, politics, and propaganda) and describes the high political sensitivity that is seen in milk countries. Milk is the main source of income in the agriculture sector and is subject to strict state and supranational regulations (p. 314). In this section, she emphasizes the differences of and integration problems for new EU members whose farmers only own a few animals. Major structural reforms are planned here.

That which has taken decades in Western Europe, is surely now coming very quickly. As a result, many people will experience great suffering. Instead of expecting that living conditions in poorer sectors of the population will improve, we must assume the opposite. The author then summarizes the topics covered.

Following this, the author cites and comments on a large number of books that deal with the problems of milk. She notes that the dairy industry established a Global Dairy Forum at its World Dairy Expo in autumn 2006 in order to have increased lobbying and counterbalance the growing antimilk movement. The final sentence of the book reads: Do you think we would have appreciated milk as much if it were red, brown, or even black.

3. About the book

\t \t\t \t\t\t \t\t\t \t\t \t\t \t\t\t \t\t\t \t\t \t\t \t\t\t \t\t\t \t\t \t\t \t\t\t \t\t\t \t\t \t\t \t\t\t \t\t\t \t\t \t\t \t\t\t \t\t\t \t\t \t\t \t\t\t \t\t\t \t\t \t\t \t\t\t \t\t\t \t\t \t
TitleMILCH besser nicht! (Milk, better not!)
SubtitleA book of critical readings
Author(s)Maria Rollinger
PublisherJou-Verlag Erfurt
Publ. Date2004, revised and updated edition 2007, reprinted 2013
Pages350
ISBN978-3-940236-00-5
CommentThis is the most comprehensive critical book about milk that I know of, at least in German. Very well researched.

Review: Prof. Dr. Marcel Hebbelinck (Member of the scientific advisory board of VEBU, Vegetarierbund Deutschland

Prof. Dr. Marcel Hebbelinck (Member of the scientific advisory board of VEBU, Vegetarierbund Deutschland [German Vegetarian Society) wrote the following review:

As a result to the many elaborate advertising campaigns, most consumers consider dairy products to be nutritious and healthy. This story line was and still is carefully constructed by the producers of dairy products and supported by supposedly scientifically based statements.

The relatively high calcium content is particularly stressed. Critical questions are only rarely asked, and scientific research pointing to possible negative effects is almost never discussed. Exceptions are the problem of lactase deficiency in a part of the population, as well as a possible milk protein allergy.

A book such as this one is therefore rather the exception: a comprehensive overview of the various aspects of milk and other dairy products, as viewed culturally, ethically, economically and statistically, ecologically, technologically, legally, hygienically, and medically.

The author of this book is a lawyer who came across this subject as part of her work as she was reading a study of European directives on milk and dairy products. She has written, along “with expert help from Ulrike Martin-Plonka (nutritionist who specializes in the treatment of food allergies),” a multifaceted, comprehensive, and critical evaluation of milk and dairy products. Many interesting and “sometimes unexpected” aspects are critically analyzed.

The fact that many people get sick from consuming milk and dairy products was new to the author and she therefore begins her book with an in-depth look at the subject of milk. Nutritionists and physicians, in particular, will find the discussions about the causal involvement of milk and dairy products in the emergence of serious diseases (including diabetes, atherosclerosis, hyperhomocysteinemia, eye diseases, and breast cancer) to be of great interest.

The essential differences in the composition of human milk and the milk of other mammals are very well known.

How the dairy cow is repeatedly impregnated, why the calf is taken away from its mother, how the cow is milked by machines and how milk production is increased, the problem with "growthhormones" and antibiotics, European legislation on this subject, and the unresolved question of the possible transmission of BSE through cow's milk are just some of the many topics addressed in this book.

The “relationship of milk and calcium and bone formation” is thoroughly and critically looked into. The recent assertion that milk can be used for weight reduction is also analyzed.

The author explains how it came about that modern people went from relatively moderate consumption of milk as a natural farm product to mass consumption of today's industrial product.

Since the end of World War II and even more so after 1970, the dairy industry has undergone exponential "growing" with the use of modern machine technology for the production of milk resulting in an enormous increase in the consumption of cheese, yogurt, cream, and ice cream in particular. It is also impressive to read about how many different foods contain milk ingredients.

This book may come across as being complicated from time to time, but it is quite fascinating and instructive to read. Moreover, much emphasis is placed on the explanations of concepts from the areas of food biochemistry, health, and pathology. For example, it covers a lot of interesting information about lactose and milk protein (especially casein). Many facts are brought to light that you usually don't find in conventional manuals on nutrition.

Maria Rollinger has done an in-depth review of the scientific literature. Throughout the book, there are footnotes with references to websites, scientific references, and additional information. The appendix contains a glossary of frequently used foreign terms, references, Internet addresses, and an index.
Anyone who is interested in the subject of milk as a common food product will profit from reading this book and can then draw their own conclusions.

Response from a woman avoiding dairy products:

This article has convinced me. I'm going to order the book right away. I was a staunch dairy fan for 35 years. However, after my son was born, it was determined that he was allergic to the milk protein in dairy milk and since I was still breastfeeding him, my doctor recommended that I also completely give up dairy ingredients. That’s not easy because dairy products are in practically everything, I found out. But I decided to do this for the benefit of my child and after a few weeks I found out that I probably had a milk allergy, too.

After I stopped drinking milk, my acne and my bad hay fever (which didn't even get better after four years of immunotherapy) disappeared completely. Since this happened, I really can't say anything positive about milk. Unfortunately, I am not taken very seriously in restaurants, and they often bring out a tray with crème brûlée or other desserts with dairy even though I tell them right at the beginning that I have a milk allergy.

In the eyes of most people I know, milk is still something very healthy, and they think that my son and I are to be pitied.

A physician, Dr. Ro ... MD, responded with the famous German saying: Dairy milk is good for calves.

The author, a lawyer, born in 1954, has had the opportunity to personally experience the life and living conditions in several other countries.

Ulrike Martin-Plonka (who assisted with research for the book) runs a self-help group in Fürth, Germany, for individuals who are lactose intolerant or have food allergies.

The publisher also has links to websites about the book: www.milchlos.de and www.milchbessernicht.de (both in German), with a direct order option that includes free shipping (payment in advance) and has a return policy of 14 days! The book is only available in German.

Book jacket text

“Would you like to know more about the legend of the Milchhexe (milk witch), the phrase 'the milkmaid's reckoning' that is used in German, find out when humanity began consuming massive amounts of dairy products, how long a turbo cow lives on average, what the deal is with cloned cows, what scientists say on behalf of the European Union as to how cows are currently being kept, why milk no longer goes sour, but spoils, what differentiates the yogurt of today from traditional yogurt, who on this planet is lactose intolerant and why, what diseases are associated with dairy products, and ultimately why we suffer from calcium deficiencies in spite of our high milk consumption? If so, you can find the answers here and references to sources where you can read more.

A food thriller, exciting from beginning to end.

\"The© CC-by-sa 2.0, Ernst Erb, Foundation Diet and Health Switzerland

Sources and Amazon reviews

Bibliography, p. 318. I counted 113 sources cited.
The author lists numerous scientific studies on the text pages in footnotes.
Internet addresses, p. 329 (42 listed); abbreviations, p. 333; glossary, p. 335; index beginning on pages 345–350.

On Amazon the book has proven to be very popular, as shown by 44 customer reviews (October 2014). The maximum number of 5 stars was awarded 38 times (followed by 4× ****, 1× ***, 1× **, and no 1 star * reviews)!

Terms for search machines

I am including terminology here so that this important article—also for mothers who are breast-feeding—can be easily found via search machines. Medications, milk pump or breast pump if the infant has difficulty breast-feeding, breast milk, but also during pregnancy (gestation, gravidity), panacea or milk ejection reflex and letdown reflex. The word mother's milk is not used in this article, but if you do a Control-F search for the term breast milk, you will get to the majority of the sections on the topic. Lactiferous glands refer to the mammary glands in humans, or rather female breasts. Breast engorgement can lead to inflammation of the breast. Continue regular breast-feeding and massage/rub the engorged area. See also midwife. And on the website mamiweb.de: A figure from 1780 that today seems rather alarming. Of the 21,000 children born in Paris who were registered, 17,000 were born at home with the help of midwives.

"