Stiftung Gesundheit & Ernährung
S t i f t u n g
Gesundheit & Ernährung
Schweiz
QR Code
Beste Aussichten für Ihre Gesundheit

Riboflavin (Vitamin B2)

Riboflavin, ein wasserlösliches B-Vitamin, ist hitzebeständig und lichtempfindlich. Es ist in vielen Enzymen an wichtigen Stoffwechselvorgängen beteiligt.

Fazit:

Über eine gezielte Auswahl an Lebensmitteln wie Vollkorngetreide, Samen, Hülsenfrüchten und Hefeflocken decken Veganer ihren Bedarf an Riboflavin gut.

Es ist wichtig, auf eine möglichst luftdichte und dunkle Lagerung der Lebensmittel zu achten.

CLICK FOR: Zutaten mit höchsten Werten

Nicht informierte Veganer begehen zu oft Ernährungsfehler. Darum ist dieser Link wichtig: Veganer essen oft ungesund. Vermeidbare Ernährungsfehler.

Der Name Riboflavin stammt von der Ribose, einem Zuckermolekül, das einen Teil seiner Struktur ausmacht. Der Flavinanteil verleiht der Substanz die gelbliche Farbe im oxidierten Zustand. "Flavus" ist das lateinische Wort für "gelb". Das Vitamin B2 identifizierte man 1932 in einem Hefeextrakt.

Vorkommen:

Vitamin B2 kommt in Lebensmitteln als freies Riboflavin, als FMN und als FAD vor.1 Gute pflanzliche Quellen sind Hefe, Nüsse, Pilze, Ölsamen, Hülsenfrüchte und Vollgetreide.4 Tierische Quellen sind Leber, Käse, Fisch und Fleisch.3 Folgende Nahrungsmittel (Angabe in rohem Zustand, wenn nicht anders vermerkt) enthalten hohe Werte (mg/100g):5

  • Tierische Quellen: Kalbsleber (2.86), Cheddar (0.43), Wildlachs (0.38), Emmentaler (0.30), Pouletbrust (roh: 0.18, geschmort: 0.19, grilliert: 0.21)

Lager- und Zubereitungsverluste:

Beim Mahlen von Getreide zu Auszugsmehl ohne Mitverwendung von Randschichten und Keim geht Riboflavin verloren. Riboflavin ist vor allem im Keim und in den Randschichten des Getreides lokalisiert. Während der Keimung des Getreides steigt der Riboflavin-Gehalt an. Dies macht den Einsatz von Getreidekeimlingen als Riboflavin-Quelle z.B. in Müeslis interessant.4 Riboflavin ist lichtempfindlich, aber hitzebeständig und stabil gegenüber Sauerstoff. Die Verluste bei der Lagerung und Zubereitung von Lebensmitteln liegen zwischen 5 Prozent bei Fleisch und 35 Prozent bei Gemüse.1 Beim Kochen von Gemüse liegen die Verluste zwischen 0 Prozent (Mitverwendung der Garflüssigkeit) und 70 Prozent (ohne Mitverwendung der Garflüssigkeit). Beim Frittieren von Kartoffeln findet gar eine Aufkonzentration um bis zu 150 Prozent statt.3

Ernährung - Gesundheit:

Riboflavin dient als Vorstufe für die Coenzyme Flavinmononucleotid (FMN) und Flavinadenindinucleotid (FAD), die bei verschiedenen Stoffwechselvorgängen eine zentrale Rolle einnehmen. Das B-Vitamin erfüllt ausserdem Funktionen bei der Embryonalentwicklung, im Immunsystem sowie beim Schutz von Nervenzellen.

Tagesbedarf auf lange Sicht:

Wegen der Beteiligung der Flavinenzyme am Energiestoffwechsel ist der Riboflavinbedarf abhängig vom Energieumsatz. Die experimentell ermittelte Untergrenze liegt bei 0.6 mg/1000kcal. Davon leitete man Empfehlungen von 1.4 mg/Tag (Mann) und 1.2 mg/Tag (Frau) ab. Die Mindestaufnahme von 1.2 mg/Tag sollte man auch bei niedriger Energiezufuhr, wie bei Reduktionskost oder bei älteren Menschen, nicht unterschreiten. Der Bedarf ist bei Stress, körperlicher Arbeit und Sport erhöht. Schwangeren (Synthese von fetalem und mütterlichem Gewebe) empfiehlt man 1.5 mg/Tag und Stillenden (erhöhter Stoffwechsel, Abgabe in Muttermilch) 1.6 mg/Tag. Obwohl im deutschsprachigen Raum die durchschnittliche Allgemeinbevölkerung die Empfehlungen überschreitet, erreichen 20 % der Männer und 26 % der Frauen die Empfehlungen nicht. In einer deutschen Veganstudie erreichten die Veganer die Zufuhrempfehlungen im Schnitt. Aber 48 % lagen unter den Empfehlungen. Der Riboflavinstatus unterscheidet sich kaum zwischen Lakto-Ovo-Vegetariern und Mischköstlern.4

Mangelsymptome:

Da Riboflavin für die Aktivierung von Vitamin B6 und die Umwandlung von Tryptophan zu Niacin wichtig ist, kann Riboflavin-Mangel auch Mangelsymptome für Vitamin B6 und Niacin hervorrufen. Ein einfacher, unkomplizierter Riboflavin-Mangel ist selten; er ist fast immer der Auslöser eines Multi-Vitamin-B-Mangels.8 Folgende Symptome treten auf:3,6,8,9

  • Frühe Symptome:
    • Mundhöhle und Lippen (Mundwinkelrhagaden): Schmerzhafte Spalten und Risse bilden sich an den Mundwinkeln und auf den Lippen.
    • Haut (seborrhoische Dermatitis): Gerötete, schuppige, fettige, schmerzhafte und juckende Stellen bilden sich auf der Haut, insbesondere im Bereich Nase, Mund, Ohren und Genitalien.
  • Späte Symptome:
    • Blutarmut (normozytäre, normochrome Anämie): Die roten Blutkörperchen sind morphologisch normal, aber in der Zahl und somit in der Sauerstofftransportkapazität reduziert.
    • Trübungen der Augenlinse (Katarakt): Die Sehschärfe nimmt ab und es kommt zu verschwommenem Sehen und zu Blendungsempfindlichkeit.
  • Während der Schwangerschaft: Störungen der Embryonalentwicklung und Missbildungen (Lippen-Kiefer-Gaumen-Spalten) können auftreten.

Als Ursachen kommen infrage:3,8

  • unzureichende Zufuhr: einseitige Ernährung
  • Resorptionsstörungen: Durchfall, Reizdarm
  • chronischer Alkoholkonsum
  • Erkrankungen: Fieber, Krebs, starke Verletzungen, starke Verbrennungen, chronische Krankheiten
  • endokrine Störungen: Schilddrüse, Nebenniere
  • Medikamente: orale Kontrazeptiva, Antidepressiva, Sedativa, Antibiotika

Überversorgung:

Toxische Effekte des Riboflavins sind nicht bekannt. Der Körper limitiert die Aufnahme des Riboflavins im Dünndarm. Zudem verhindern Schutzmechanismen eine Gewebeanreicherung in hohen Mengen.3 Die Gabe von Riboflavin-Supplementen führte bei älteren Personen zu einem Absinken der Homocystein-Konzentration im Blut.4

Funktionen im Körper etc.:

Riboflavin wirkt in Form von FMN und FAD als Coenzym bei den Flavinenzymen, wovon es über 60 Vertreter gibt.1,3,7

  • Antioxidatives System: FAD ist beim Flavinenzym Glutathionreduktase beteiligt. Dieses wirkt als Antioxidans und schützt empfindliche Zellbestandteile – zum Beispiel Erythrozyten. Auch in der Augenlinse stabilisiert Glutathion die Linsenproteine. Trübungen der Augenlinse treten oft gemeinsam mit einem schlechten Riboflavin-Status auf.
  • Medikamentenstoffwechsel und Entgiftung: Cytochrome P450 (CYP) können wasserunlösliche Substanzen per Oxidation in wasserlösliche Substanzen umwandeln und somit unschädlich machen, da der Körper diese dann ausscheiden kann. CYP sind mehrteilige Proteine, wovon ein Teil ein Flavoprotein sein kann. Das Flavoprotein nimmt dabei die Rolle des Reduktionsmittels wahr.
  • Energiestoffwechsel:
    • Kohlenhydratstoffwechsel:
      • FAD (Citratzyklus, Atmungskette Komplex II): FAD ist prosthetische Gruppe des Flavinenzyms Succinat-Dehydrogenase. Das Flavinenzym katalysiert die Oxidation von Succinat zu Fumarat. FAD wandelt sich dabei zu FADH2 (Energiespeicher) um. Das Flavinenzym katalysiert dann die Reduktion von Ubichinon zu Ubichinol (neuer Energiespeicher). FADH2 wandelt sich zu FAD zurück.
      • FMN (Atmungskette Komplex I): FMN ist Coenzym des Flavinenzyms NADH-Dehydrogenase. Das Flavinenzym katalysiert die Oxidation von NADH zu NAD. FMN wandelt sich dabei zu FMNH2 (Energiespeicher) um. Das Flavinenzym katalysiert dann die Reduktion von Ubichinon zu Ubichinol (neuer Energiespeicher). FMNH2 wandelt sich zu FMN zurück.
    • Fettstoffwechsel (Beta-Oxidation): Den Abbau von Fett in den Mitochondrien kann man in vier Schritte unterteilen. Beim ersten Schritt ist FAD am Enzym Acyl-CoA-Dehydrogenase beteiligt.
  • Weitere Funktionen:
    • Förderung des Wachstums und der Entwicklung der Embryonen
    • Erhaltung der Myelinschicht der Nerven
    • Abwehr gegen Krankheiten
    • Weitere Beispiele von Flavinenzymen sind Cholinoxidase, Aldehydoxidase, Diaminoxidase und Xanthinoxidase.

Aufnahme und Stoffwechsel:

In der Nahrung kommt Vitamin B2 in Form von freiem Riboflavin und proteingebundenem FMN und FAD vor.2 Längere Verweildauer der Nahrung im Magen-Darm-Trakt und die Anwesenheit von Gallensalzen scheinen positiv, Anwesenheit von verschiedenen Substanzen (Kupfer, Zink, Eisen, Koffein, Theophyllin, Saccharin, Tryptophan, Niacin und Ascorbinsäure) scheinen durch Komplexbildung negativ auf die Aufnahme zu wirken.3 Im oberen Dünndarm erfolgt nach der Dephosphorylierung die Resorption von freiem Riboflavin. Die Aufnahme erfolgt mit aktiven Transportmechanismen. Bei hohen Konzentrationen ist auch eine Aufnahme über passive Diffusion möglich.2 In der Darmmukosa findet wieder eine Resynthese von FMN und FAD statt. Beim Transport im Blut ist freies Riboflavin, FMN und FAD an Albumin und an "Riboflavin bindendes Protein" (RFBP) gebunden. In den Körperzellen erfolgen dann Umwandlungen von Riboflavin zu FMN und zu FAD (unter Kontrolle des Schilddrüsenhormons T3). Apoproteine (Apoenzyme) binden FMN und FAD dann zu Flavoproteinen (Flavinenzymen). Diese übernehmen als Enzyme (Oxidoreduktasen) vielseitige Aufgaben. Die Menge an aufgenommenem Vitamin B2 in den Zellen hängt von der Menge an Apoenzymen ab.6

Speicherung - Verbrauch - Verluste:

Die Reservekapazität beträgt zwischen 2 und 6 Wochen. Bei einem Mangel an Apoenzymen weniger.2 Im Körper weisen Leber, Nieren und Herzmuskel die höchsten Konzentrationen an Vitamin B2 auf.4 Hohe Konzentrationen finden sich auch in den Muskeln und den Augenlinsen. Im Blut befindet sich Riboflavin vor allem in den Blutzellen (insbesondere Leukozyten). Die Hauptausscheidung erfolgt via Urin. 60-70 Prozent scheidet die Niere in Form von Riboflavin, den Rest in Form von Hydroxymethyl-Riboflavin und von anderen Metaboliten aus. Infolge der Riboflavin-Synthese durch die Darmflora ist in den Fäzes der Gehalt oft grösser, als die über die Nahrung aufgenommene Menge erwarten lässt.3

Strukturen:

Als Vitamin B2 bezeichnet man die drei Flavine (natürlich gelbe Farbstoffe) Riboflavin, Flavinmononucleotid (FMN) und Flavinadenindinucleotid (FAD). Bei FMN ist Riboflavin mit einem Molekül Phosphorsäure verestert (phosphoryliert). Bei FAD ist Riboflavin mit zwei Molekülen Phosphorsäure, einem Molekül Ribose und einem Molekül Adenin verknüpft. Riboflavin ist in Form von FMN und FAD aktiv. FMN und FAD sind als Coenzym oder prosthetische Gruppe Bestandteil von sogenannten Flavinenzymen (auch: Flavoenzyme, Flavoproteine, gelbe Fermente genannt).1 Flavinenzyme sind Oxidoreduktasen. Oxidoreduktasen katalysieren Redoxreaktionen. Redoxreaktionen sind an verschiedenen Stoffwechselwegen und an der Energieproduktion beteiligt.2,3

Literatur - Quellen:

  1. De Groot H. & Farhadi J. Ernährungswissenschaft (Europa-Lehrmittel Verlag, Haan-Gruiten, 6. Auflage, 2015).
  2. Biesalski H.K. & Grimm P. Taschenatlas der Ernährung (Georg Thieme Verlag, Stuttgart und New York, 3. Auflage, 2004).
  3. Elmadfa I. & Leitzmann C. Ernährung des Menschen (Eugen Ulmer Verlag, Stuttgart, 5. Auflage, 2015).
  4. Leitzmann C. & Keller M. Vegetarische Ernährung (Eugen Ulmer Verlag, Stuttgart, 3. Auflage, 2013).
  5. US-Amerikanische Nährwertdatenbank USDA.
  6. Elmadfa I. & Meyer A. Ernährungslehre (Eugen Ulmer Verlag, Stuttgart, 3. Auflage, 2015).
  7. Wikipedia (Cytochrome P450), Wikipedia (Citratzyklus), Wikipedia (Atmungskette), Wikipedia (β-Oxidation).
  8. Zimmermann M., Schurgast H. & Burgerstein U.P. Burgersteins Handbuch Nährstoffe (Karl F. Haug Verlag, Heidelberg, 9. Auflage, 2000).
  9. Wikipedia (Anämie), Wikipedia (Katarakt).
AutorInnen: |

Kommentare